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Preface 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 
assessments to assist public- and private-sector organizations in their efforts to improve the 
quality of health care in the United States. The reports and assessments provide organizations 
with comprehensive, science-based information on common, costly medical conditions and new 
health care technologies and strategies. The EPCs systematically review the relevant scientific 
literature on topics assigned to them by AHRQ and conduct additional analyses when 
appropriate prior to developing their reports and assessments. 

Strong methodological approaches to systematic review improve the transparency, 
consistency, and scientific rigor of these reports. Through a collaborative effort of the Effective 
Health Care (EHC) Program, the Agency for Healthcare Research and Quality (AHRQ), the 
EHC Program Scientific Resource Center, and the AHRQ Evidence-based Practice Centers have 
developed a Methods Guide for Comparative Effectiveness Reviews. This Guide presents issues 
key to the development of Systematic Reviews and describes recommended approaches for 
addressing difficult, frequently encountered methodological issues. 

The Methods Guide for Comparative Effectiveness Reviews is a living document, and will be 
updated as further empiric evidence develops and our understanding of better methods improves. 
We welcome comments on this Methods Guide paper. They may be sent by mail to the Task 
Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, 
Rockville, MD 20850, or by email to epc@ahrq.hhs.gov. 

Andrew Bindman, M.D. Arlene Bierman, M.D., M.S. 
Director Director 
Agency for Healthcare Research and Quality Center for Evidence and Practice Improvement 

Agency for Healthcare Research and Quality 

Stephanie Chang, M.D., M.P.H. 
Director, EPC Program 
Center for Evidence and Practice Improvement 
Agency for Healthcare Research and Quality 
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Introduction 

Background 
The purpose of this document is to consolidate and update quantitative synthesis 

guidance provided in three previous methods guides 1 (Fu, 2012) 2, 3 We address comparative 
effectiveness reviews (CERs), which are systematic reviews that summarize comparative 
effectiveness and harms of alternative clinical options, and aim to help clinicians, policy 
makers, and patients make informed treatment choices. We focus on interventional studies of 
efficacy and do not address diagnostic studies, individual patient level analysis, or 
observational studies, which are addressed elsewhere.4 We differentiate between what is new 
guidance in this document from what was contained in the previous three guides. 

Quantitative synthesis, or meta-analysis, is often essential for CERs to provide 
scientifically rigorous summary information. Quantitative synthesis should be conducted in a 
transparent and consistent way with methodologies reported explicitly. This guide provides 
practical recommendations on conducting synthesis. The guide is not meant to be a textbook 
on meta-analysis nor is it a comprehensive review of methods, but rather we address situations 
and decisions that are commonly faced by Evidence-based Practice Centers (EPCs). The goal 
is not to state requirements but rather to describe choices as explicitly as possible, with an 
appropriate degree of confidence. 

EPC investigators are encouraged to follow these recommendations but may choose to 
use alternative methods if deemed appropriate, and after discussion with their AHRQ project 
officer. If alternative methods are used, the investigators are required to provide rationales for 
their choice, and if appropriate, to state the strengths and limitations of the chosen method in 
order to promote consistency and transparency. In addition, as elaborated in later sections of 
this document, several steps in conducting a meta-analysis require subjective decisions such 
as the decision to combine studies or the decision to incorporate indirect evidence. For each 
subjective decision, investigators should fully explain how the decision was reached. 

This guide addresses issues in the order that they are usually addressed in a synthesis, 
though we acknowledge that the process is not always linear. We first consider the decision of 
whether or not to combine studies quantitatively. The next section addresses how to extract 
and utilize data from individual studies to construct effect sizes, followed by a section on 
statistical model choice. The fourth section considers quantifying and exploring heterogeneity. 
The fifth section describes an indirect evidence technique that has not been included in 
previous guidance – network meta-analysis, also known as mixed treatment comparisons. In 
the final section, we address the special topic of conducting stability and sensitivity analyses. 

Methods 
This guide has taken form through efforts of a workgroup comprised of members from 

across the EPCs, as well as from the Scientific Resource Center (SRC) of the AHRQ Effective 
Healthcare Program. Through surveys and discussions between AHRQ, Directors of Evidence-
based Practice Centers, the Scientific Resource Center, and the Methods Steering Committee, 
quantitative synthesis was identified as a high-priority methods workgroup topic and a need 
was identified to update the original guidance.1, 3, 5 Once confirmed as a Methods Workgroup, 
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the SRC emailed EPCs soliciting workgroup volunteers for those with quantitative methods 
expertise including statisticians, librarians, thought leaders, and methodologists. Charged by 
AHRQ to update current guidance, the workgroup consists of members from eight of thirteen 
EPCs, the SRC, and AHRQ, and commenced in the fall of 2015. We conducted regular 
workgroup teleconference calls over the course of 14 months to discuss project direction and 
scope, assign and coordinate tasks, collect and analyze data, and discuss and edit draft 
documents. After constructing a draft table of contents, we surveyed all EPCs to ensure no 
topics of interest were missing. 

The initial teleconference meeting was used to outline the draft, discuss the timeline, and agree 
upon a method for reaching consensus. The larger workgroup was split into subgroups each 
taking responsibility for a different chapter and topic focus. The larger group participated in 
biweekly discussions via teleconference and email communication. Subgroups communicated 
separately (in addition to the larger meetings) to coordinate tasks, discuss the literature review 
results and draft their respective chapters. Later, chapter drafts were combined into a larger 
document for workgroup review and discussion on the bi-weekly calls. 

Literature Search and Review 

A medical research librarian searched the ARHQ SRC Methods Library, a bibliographic 
database curated by the SRC currently containing over 16,000 citations of methodological works 
for systematic reviews and comparative effectiveness reviews. Key words and descriptors used 
were empirical guidance and research articles, determined on calls and email correspondence 
with the research librarian and used to search the AHRQ SRC Methods Library. The date was 
limited to 2012 and after to capture new and current guidance or methods documents and 
anything prior to 2012 would have already been reflected in the original guidance on quantitative 
synthesis, limited since last guidance. 

The search yield was 1,358 titles and abstracts which were reviewed by all workgroup 
members using ABSTRACKR software (available at http://abstrackr.cebm.brown.edu). Each 
subgroup preferred the responsibility of including articles relevant to their own groups, thus each 
person in the workgroup reviewed the abstracts looking specifically at relevance to their 
respective subgroups. Reviews were done by single review as the inclusion criteria were very 
generous and fluid, investigators would include anything that may be been potentially relevant 
and not necessarily used. Full text articles were pulled for each group leaving the decision of 
inclusion/exclusion to the authors of the subgroups/chapters. 

Consensus and Recommendations 

Reaching consensus is of great importance for AHRQ methods guidance as before the 
workgroup product can be submitted for peer review and publication, Directors from each EPC 
must agree with the proposed recommendations. This workgroup recognized this importance and 
on the first call and agreed on a process for consensus and conflict resolution: state 
disagreements in the document; conflicts within the smaller groups will be taken back to the 
larger groups for discussion and resolution. If a resolution isn’t met, the groups will present all 
different ways/methods, be explicit; all members are encouraged to be candid on calls and emails 
about any concerns, ensuring voices are heard. 
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Following extensive drafting, a report of the workgroup’s key conclusions and 
recommendations was circulated for comment by EPC and AHRQ officers at a biannual EPC 
Director’s meeting in October 2016. In addition a full draft was circulated to AHRQ and EPC 
Director’s prior to submission for peer review, and the manuscript was made available for public 
review; all these comments have been considered by the team in the final preparation of this 
report. 
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Chapter I: Decision to Combine Trials of Treatment 
Efficacy or Harm 

1.1 Goals of the Meta-Analysis 

In addition to supporting the goal of the larger review in which it is embedded, the 
overarching goal of a quantitative synthesis is generally to provide the best estimate of the effect 
of an intervention. As part of that aspirational goal, results of a meta-analysis may inform a 
number of related questions, such as whether that best estimate represents something other than a 
null effect (is this intervention beneficial?), the range in which the true effect likely lies, whether 
it is appropriate to provide a single best estimate, and what study-level characteristics may 
influence the effect estimate. Before tackling these questions, it is necessary to answer a 
preliminary but fundamental question: Is it appropriate to pool the results of the identified 
studies?6 

1.2 Clinical and Methodological Heterogeneity 

Studies must be reasonably similar to be pooled in a meta-analysis.1 Even when the study 
protocol identifies a coherent and fairly narrow body of literature, the actual included studies 
may represent a wide range of specific population, intervention, and study characteristics. 
Variations in these factors are referred to as clinical heterogeneity and methodological 
heterogeneity.7, 8 A third form of heterogeneity, statistical heterogeneity, will be discussed later. 

Clinical heterogeneity refers to characteristics related to the participants, interventions, 
outcomes, and study setting, while methodological heterogeneity refers to variations in study 
methods (e.g., study design and study conduct). Exploring these two types of heterogeneity will 
inform the decision to combine studies, both because they may reveal a non-cohesive body of 
evidence that should not be pooled all together, and because variations in these factors may be 
associated with variations in treatment effect.8 

Deciding whether studies are “similar enough” to pool is inherently a matter of 
judgement; there is no universally accepted standard.6 Some have suggested that pooling may be 
acceptable when it is plausible that the underlying effects could be similar across subpopulations 
and variations in interventions and outcomes.9 Others suggest that it may be acceptable to 
combine interventions with likely similar mechanisms of action.6 Verbeek and colleagues 
suggest working through key sources of variability in sequence, beginning the clinical variables 
of intervention/exposure, control condition, and participants, before moving on to 
methodological areas of study design, outcome, and follow-up time. Where variability on some 
dimensions is very high, reviewers should consider whether there are coherent subgroups of 
trials that can be pooled.6 In this way, the assessment of heterogeneity may actually inform the 
goal/question of the quantitative synthesis iteratively, such that the goal is refined until a 
reasonably low level of heterogeneity is achieved (or there is a decision not to combine studies). 
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Again, what constitutes an acceptably low level of clinical and methodological heterogeneity is 
not objectively defined, and investigators should be transparent about this assessment. 
Methodological heterogeneity presents some common challenges: 

Sample size. Sometimes the body of evidence comprises one or two very large trials and 
many small trials. If the best evidence is derived from large trials, it may be appropriate to focus 
on those trials rather than combining the best data with inferior data, particularly when 
addressing rare events that small studies are underpowered to examine.10, 11 Relatedly, when the 
body of evidence is limited only to small studies, pooling should be undertaken with caution. 
Results from small trials are less likely to be reliable than results of large trials, even when the 
risk of bias is low.12 

First, with small samples it is difficult to balance the proportion of patients in potentially 
important subgroups across treatment conditions, and a difference between conditions of just a 
very few persons falling into a subgroup can result in a large proportional difference between 
groups. Characteristics that are rare are particularly at risk of being unbalanced in studies with 
small samples. In such situations there is no way to know if study effects are due to the 
intervention or to differences in the study group samples. In addition, samples are generally 
drawn from a narrower geographic range in small studies, making replication in other samples 
more uncertain. Finally, although it is not always the case, large trials are more likely to involve 
a level of scrutiny and standardization to ensure low risk of bias than small studies. Therefore, 
when there are only a handful of studies, and many have small samples, pooled effects are less 
likely to reflect the true effects of the intervention. In this case, methods such as trial sequential 
analysis to estimate the required or optimal information size can help the reviewer determine 
whether the sample size is sufficient to conclude that results are likely to be stable and not due to 
random heterogeneity (i.e., a truly significant or truly null results; not a type I or type II error).13, 

14 A similar case can be made for meta-analysis of rare events: a small difference in absolute 
numbers of events can result in large relative differences, usually with low precision (i.e., wide 
confidence intervals). This could result in misleading effect estimates if the analysis is limited to 
trials that are underpowered for the rare outcomes.11 An option here would be to pool the studies 
and acknowledge imprecision or other limitations when rating the strength of evidence. 

Level of randomization. Another question is whether it is acceptable to combine 
individually-randomized and cluster randomized trials. We believe this is generally acceptable, 
with appropriate adjustment for cluster randomization as needed.15 However, closer examination 
may show that the cluster randomized trials also tend to systematically differ on population or 
intervention characteristics from the individually-randomized trials. If so, subgroup analyses may 
be considered. 

Outcomes. There are also a number of challenges commonly encountered related to outcomes: 

1.	 Outcome definition. Studies may have a wide array of specific instruments and cut-points 
for a common outcome. For example, a review considering pooling a binary depression 
prevalence outcome may find specific measures that range from a formal depression 
diagnosis based on a clinical interview to scoring above a cut-point on a wide variety of 
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specific instruments. One guiding principle is to consider pooling only when it is plausible 
that the underlying relative effects are consistent across specific definitions of an outcome.  

2.	 Reported statistics. There is also typically substantial variability in which statistics are 
reported (e.g., baseline and mean followup scores, change scores for each condition, 
between-group differences at followup, etc.). Methods to calculate or estimate missing 
statistics are available,5 however the investigators must ultimately weigh the tradeoff of 
risking less accurate results (due to assumptions required to estimate missing data) with the 
potential advantage of pooling a more complete set of studies. 

3.	 Sparsely reported outcomes. Another difficult but common situation is when a relatively 
small subset of the included studies report an important review outcome. For example, a 
reviewer may have 30 trials of weight loss interventions, of which only 10 reported blood 
pressure, which is considered an important outcome for the review. This pattern of results 
may indicate reporting bias, that trials finding group differences in blood pressure were more 
likely to report blood pressure findings. On the other hand, perhaps most of the studies 
limited to patients with elevated cardiovascular disease (CVD) risk factors did report blood 
pressure. In this case the reviewer may decide to combine the studies reporting blood 
pressure that were conducted in high CVD risk populations. However, investigators should 
be clear about the subset of the target population the meta-analysis is applicable to. An 
examination of the clinical and methodological features of the subset of trials where blood 
pressure was reported is necessary to make an informed judgement about whether to conduct 
a meta-analysis or not. 

4.	 Rare outcomes. As noted above, meta-analyses of rare binary outcomes are frequently 
underpowered, and tend to overestimate the true effect size, so pooling should be undertaken 
with caution.10 One example is all-cause mortality, which is frequently provided as part of 
the participant flow methods, but may not be a primary study outcome, may not have 
adjudication methods described, and typically occurs very rarely. Studies are often 
underpowered to detect differences in mortality if it is not a primary outcome. 

1.3 Statistical Heterogeneity 

Once clinical and methodologic heterogeneity have been deemed acceptable for pooling, 
reviewers should next consider statistical heterogeneity. This is accomplished by looking at the 
consistency and precision of results of the included studies, i.e., conducting a preliminary meta-
analysis. The decision that this process informs is whether the results of the meta-analysis are 
valid and should be presented, or should instead be shown without the pooled results, either in a 
forest plot or a table. If statistical heterogeneity is very high, the investigator may question 
whether an “average” effect is really meaningful or useful. If there is a reasonably large number 
of trials the reviewer may shift to exploring effect modification with high heterogeneity, however 
this may not be possible if few trials are being pooled. While many would likely agree that 
pooling (or reporting pooled results) should be avoided when there are few studies and statistical 
heterogeneity is high, what constitutes “few” studies and “high” heterogeneity is a matter of 
judgement. 

While there are a variety of methods for characterizing statistical heterogeneity, one 
common method is with the I2 statistic. I2 is the proportion of inter-study variance in the pooled 
trials that is due to heterogeneity in the studies, as opposed to random variation.16 The Cochrane 
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manual proposes ranges for interpreting I2, but notes that I2 should be interpreted in light of 
factors such as the magnitude and direction of effects, so did not provide discrete (non
overlapping) categories for low, medium, and high heterogeneity.15 They propose that the 
statistical heterogeneity associated with I2 values of 0-40% might not be important, 30-60% may 
represent moderate heterogeneity, 50-90% may represent substantial heterogeneity, and 75-100% 
is considerable heterogeneity. Other measures of statistical heterogeneity include Cochrane’s Q 
and tau2, but these heterogeneity statistics do not have intrinsic standardized scales that allow 
any specific values to be characterized as “small”, “medium” or “large” in any meaningful 
way.

Although widely used in quantitative synthesis, the I2 has come under criticism in recent 
years. One important challenge with I2 is that it has low power to detect statistical heterogeneity 
when there are few studies to pool and high statistical heterogeneity.18, 19 Further, in random 
effects models (but not fixed effects models), calculations demonstrate that I2 tends to 
underestimate true statistical heterogeneity when there are fewer than about 10 studies and the 
true I2 value is 50% or more.20 Complicating this, meta-analyses of continuous measures tend to 
have higher heterogeneity than those of binary outcomes, and I2 tends to increase as the number 
of studies increases when analyzing continuous outcomes, but not binary outcomes.21, 22 This has 
prompted some authors to suggest that different standards may be considered for interpreting I2 

for meta-analyses of continuous and binary outcomes, but I2 should only be considered reliable 
when there are a sufficient number of studies.22 Unfortunately there is not clear consensus 
regarding what constitutes a sufficient number of studies for a given amount of statistical 
heterogeneity, nor is it possible to be entirely prescriptive, given the limits of I2 as a measure of 
heterogeneity 

1.4 Other Factors to Consider 

Small Studies Effect. Another factor to consider is whether there is a small studies 
effect; that is, are smaller studies more likely to show larger effects than larger studies? If so, the 
assumption is that the pooled results may overestimate the true effect size. Reviewers should 
examine small studies effects using standard statistical tests such as the Egger test.23 If there 
appears to be a small studies effect, the reviewer may decide not to report pooled results since 
they could be misleading. 

Consistency of Effects. The consistency of the effects is also important to consider when 
deciding whether meta-analysis results are valid and should be reported. A reviewer may decide 
that it is acceptable to combine 3 large similar studies with fairly consistent effect sizes, but not 
to combine 10 small studies with high heterogeneity in effects, especially if results are not 
consistently in the same direction. In other words, if results are scattered on both sides of the 
null, indicating that the intervention could be either beneficial or harmful, a pooled effect may 
not be valid; there may be factors that influence whether an intervention is helpful or harmful 
that are not captured in the analysis. 
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1.5 Conclusion 

In the end, the decision to pool boils down to the question: will the results of a meta-analysis 
help you find an answer to a meaningful question? That is, will the meta-analysis provide 
something in addition to what can be understood from looking at the studies individually? There 
is broad guidance to inform investigators in making this decision, but ultimately the choice is 
subjective, and requires careful consideration of the body of literature identified. To provide a 
meaningful result, the trials must be similar enough in content, procedures, and implementation 
to represent a cohesive group that is relevant to real practice/decision-making. 
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Chapter II: Optimizing Use of Effect Size Data 

2.1 Nuances of Binary Effect Sizes 

Data Needed for Binary Effect Size Computation 

Under ideal circumstances, minimal data necessary for the computation of effect sizes of binary 
data would be available in published trial documents or otherwise available from the original 
source(s). Specifically, risk difference (RD), relative risk (RR) and odds ratios (OR) can be 
computed when the number of events (technically the number of cases in whom there was an 
event) and sample sizes are known for treatment and control groups. A schematic of one 
common approach to assembling binary data from trials for effect size computation is presented 
in Table 2.1 and will facilitate easy conversion to analysis using commercially-available 
software such as Stata (College Station, TX) or Comprehensive Meta-Analysis (Englewood, NJ). 

Table 2.1: Assembling binary data for effect size computation 

Treatment Treatment Control Control 
Events n Events n 

Study X 5 25 6 25 

Study Y 23 194 21 189 

In many instances, however, a single or subset of studies to be included in the meta-
analysis only report a single measure of association (for example, an odds ratio), and the sample 
size and event count are not available. Hence, the effect size chosen for the meta-analysis can be 
dictated by whichever was used in studies wherein essential raw metrics are not reported and not 
available. It should be noted that trial data published using CONSORT guidance should include 
the number of events and sample sizes for treatment and control groups groups.24 The flexibility 
of choosing the most appropriate effect size is important to the integrity and transparency of 
meta-analyses; hence, every effort should be made to obtain all data presented in Table 2.1. In 
the event that data are only available in an effect size from the original reports, it is important 
assemble both the mean effect sizes and the associated 95% confidence intervals. 

Choosing Among Effect Size Options 

There is one absolute measure and two relative measures that are commonly used in 
meta-analyses involving binary data. The absolute measure - RD - is a simple metric and 
therefore most easily understood by clinicians and other key stakeholders including patient and 
lay groups. The relative measures – RR and OR – are also used frequently. 
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Risk Difference 

The RD is most easily understood by clinicians and patients alike, and therefore most 
useful to aid decision making. But the RD tends to be less consistent than relative measures of 
effect size (RR and OR) across studies. Hence the RD may be a preferred measure in meta-
analyses whenever the proportions of events among control groups are relatively common and 
similar across studies. When events are rare and when event rates differ across studies, however, 
the RD is not the preferred effects size to be used in meta-analysis because combined estimates 
based on RD in such instances have conservative confidence intervals and low statistical power. 
The calculation of RD and other effect size metrics using binary data from clinical trials can be 
performed considering the following labeling (Table 2.2). 

Table 2.2: Organizing binary data for effect size 
computation 

Events No Events N 

Treatment A B n1 

Control C D n2 

Equation Set 2.1: Risk Difference 

RD =  
A 
−  

C 
n1 n2 

AB CD 
=VRD n13 + n23 

SERD = VRD 

LLRD = RD − 1.96 ∗ SERD 

ULRD = RD + 1.96 ∗ SERD 
Where, 
RD = risk difference 
VRD = variance of the risk difference 
SERD = standard error of the risk difference 
LLRD = lower limit of the 95% confidence interval of the risk difference 
ULRD = upper limit of the 95% confidence interval of the risk difference 

Risk Ratio 

It is important to note that the RR and OR are effectively equivalent for event rates below 10%
15%; hence, in such cases the RR is chosen over the OR simply for interpretability and not 
substantive difference. A potential drawback to the use of RR over OR (or RD) is that the RR of 
an event is not the reciprocal of the RR for from the non-occurrence of that event (e.g. using 
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survival as the outcome instead of death). In contrast, switching between events and non-
occurrence of events is reciprocal in the metric of OR and only entails a change in the sign of 
RD. Hence, if switching between death and survival from death, as an example, in central to the 
meta-analysis then the RR is likely not the binary effect size metric of choice unless all raw data 
are available and re-computation is accessible. Moreover, investigators should be particularly 
attentive to the definition of an outcome event when using a RR. 

The calculation of RR using binary data from clinical trials can be performed considering the 
labeling listed in Table 2.2. Of particularly note, the metrics of dispersion related to the RR are 
first computed in a natural log metric and then converted to the metric of RR. 

Equation Set 2.2: Risk Ratio 

RR = 
A/n1 

C/n2
lnRR = ln(RR) 

1 1 1 1
VlnRR 

= 
A

+
C 
− −

n1 n2 

SElnRR 
= VlnRR 

LLlnRR 
= lnRR − 1.96 ∗ SElnRR 

ULlnRR 
= lnRR + 1.96 ∗ SElnRR
 

RR = exp(lnRR)

LL of the 95%CI = exp(LLlnRR 

)

UL of the 95%CI = exp(ULlnRR 

)
 
Where, 
RR = risk ratio 
lnRR = natural log of the risk ratio 
VlnRR = variance of the natural log of the risk ratio 
SElnRR = standard error of the natural log of the risk ratio 
LLlnRR = lower limit of the 95% confidence interval of the natural log of the risk ratio 
ULlnRR = upper limit of the 95% confidence interval of the natural log of the risk ratio 
LLRR = lower limit of the 95% confidence interval of the risk ratio 
ULRR = upper limit of the 95% confidence interval of the risk ratio 

Therefore, while the definition of the outcome event needs to be consistent among the included 
studies when using any measure, the investigators should be particularly attentive to the 
definition of an outcome event when using a RR. 

Odds Ratios 

An alternative relative metric for use with binary data is the OR. The calculation of OR using 
binary data from clinical trials can be performed considering the labeling listed in Table 2.2. 
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Similar to the computation of RR, the metrics of dispersion related to the OR are first computed 
in a natural log metric and then converted to the metric of OR. 

Equation Set 2.3: Odds Ratios 

OR = 
AD 
BC

lnOR = ln(OR) 

1 1 1 1 
=VlnOR A

+ 
B

+ 
C

+ 
D 

SElnOR 
= VlnOR 

LLlnOR 
= lnOR − 1.96 ∗ SElnOR 

ULLogOR 
= lnOR + 1.96 ∗ SElnOR
 

OR = exp(lnOR)

LL of the 95%CI = exp(LLlnOR 

)

UL of the 95%CI = exp(ULlnOR 

)
 
Where, 
OR = odds ratio 
LnOR = natural log of the odds ratio 
VlnOR = variance of the natural log of the odds ratio 
SElnoR = standard error of the natural log of the odds ratio 
LLlnOR = lower limit of the 95% confidence interval of the natural log of the odds ratio 
ULlnOR = upper limit of the 95% confidence interval of the natural log of the odds ratio 
LLOR = lower limit of the 95% confidence interval of the odds ratio 
ULOR = upper limit of the 95% confidence interval of the odds ratio 

A variation on the calculation of OR is the Peto OR that is commonly referred to as the 
assumption free method of calculating OR. The two key differences between the standard OR 
and the Peto OR is that the latter takes into consideration the expected number of events in the 
treatment group and also incorporates a hypergeometric variance. Because of these difference, 
the Peto OR is preferred for binary studies with rare events, especially when less than 1%. But in 
contrast, the Peto OR is biased when treatment effects are large and in the instance of 
imbalanced treatment and control groups.26 

Equation Set 2.4: Peto Odds Ratios 

ORpeto = exp[{A − E(A)}/v] 

where E(A) is the expected number of events in the treatment group calculated as: 

n1(A + C)
E(A) = 

N 
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and v is hypergeometric variance, calculated as: 

v = {n1 n2(A + C)(B + D)}/{N2(N − 1)} 

There is no perfect effect size of binary data to choose because each has benefits and 
disadvantages. Criteria used to compare and contrast these measures include consistency over a 
set of studies, statistical properties, and interpretability. Key benefits and disadvantages of each 
are presented in Table 2.3. 

Table 2.3: Benefits and Disadvantages of Binary Data Effect Sizes27 

Effects Size Benefits Disadvantages 

Risk Difference 
-may be more easily 
interpretable among lay 
audiences 
-absolute metric 

- not consistent between 
studies with differing baseline 
risks. 
-precision can be misleading 
when events are rare 
-not commonly reported in 
individual trials. 

Relative Risk 
-easily interpretable 
-commonly reported in 
individual trials considered in 
meta-analyses 
-consistent even with differing 
baseline risks 

-values of “death” and 
“survival” are not reciprocals 
of each other as would be 
intuitively expected 

Odds Ratio 
-consistent even with differing 
baseline risks 
-commonly reported in 
individual trials considered in 
meta-analyses 

-not easily interpretable 
- can be misleading when 
interpreted like relative risks 
-widespread use in meta-
analyses may be because of 
convenience and history as 
opposed to mathematical 
properties. 

Time-to-Event and Count Outcomes 

For time to event data, the effect size measure is hazard ratio (HR), and most commonly 
estimated from the Cox proportional hazards model. In the best case scenario, HR and associated 
95% confidence intervals are available from all sources, the time horizon was similar across 
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studies, and there is evidence that the proportional hazards assumption was met in each study to 
be included in a meta-analysis. When these conditions are not met, however, a HR and 
associated dispersion can be extracted with difficulty and concern over reproducibility due to 
observer variation.28 

Incident rate ratio (IRR) is used for count data and can be estimated from a Poisson or 
negative binomial regression models. It is important to consider how IRR estimates were derived 
in individual studies particularly with respect to adjustments for zero-inflation and/or over-
dispersion; these can be sources of between-study heterogeneity. 

Special Topics 

Control Rate Meta-regression for Lower Underlying Risk. 

For studies with binary outcomes, the “control rate” refers to the proportion of subjects in 
the control group who experienced the event. The control rate is viewed as a surrogate for 
covariate differences between studies because it is influenced by illness severity, concomitant 
treatment, duration of follow-up, and other factors that differ across studies.29, 30 Patients with 
higher underlying risk for poor outcomes may experience different benefits and/or harms from 
treatment than patients with lower underlying risk.31 Hence, the control rate can be used to test 
for interaction between underlying population risk and treatment benefit, particularly in the 
setting of significant heterogeneity (see Chapter IV) or otherwise known differences in control 
rate across studies. To examine for an interaction between underlying population risk and 
treatment benefit, we recommend the following approach: 

1.	 Generate a scatter plot of treatment effect against control rate as a useful preliminary 
approach to visually assess whether there may be a relation between the two. The RD 
is more highly correlated with the control rate compared with the RR or OR. 
Similarly, the relationship between the treatment effect and control rate is inflated 
using the RD;30 hence RR or OR should be used when examining for a treatment 
effect against the control rate in visual assessment and subsequent steps. 

2.	 Generate a simple weighted regression of the effect size on the control rate. Simple 
weighted regressions tend to identify a significant relation between control rate and 
treatment effect twice as often compared with more suitable approaches (below). 30,32 

A negative finding based on a simple weighted regression (i.e. slope not significantly 
different from zero) would be most likely replicated by the more complicated 
methods, and a positive finding (i.e. slope significantly different from zero) would 
need to be verified by a more comprehensive method. 

3.	 If there is a positive finding based on a simple weighted regression, consider using 
hierarchical meta-regression models30 or Bayesian meta-regression32 models to 
validate and refine the presence of an interaction between underlying population risk 
and treatment benefit using formal control rate meta-regression. These approaches 
incorporate the covariate of control rate in explaining variance in the treatment effect 
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under the hypothesis that the control rate is a surrogate for covariate differences 
between the studies.33 

Zero Cell Counts. In a study with zero events in one arm, estimation of effect measures (RR and 
OR) or their standard errors needs the addition of a correction factor, most commonly, 0.5 added 
to all cells. This is often done in the background; hence, the default handling of zero cells by 
statistical packages should be investigated thoroughly prior to use with binary data (See Box 2.1 
for examples default zero-cell count handling). 

Box 2.1: Examples of Background Default Zero Cell Count Handling 

Equation messages from Comprehensive Meta-Analysis (version 3.3). “One or more cells was 
empty, so 0.5 was added to each cell for computation of Log odds ratio and its variance,” and 
“one or more cells was empty, so 0.5 was added to each cell for computation of the Risk 
difference variance but not for computation of the Risk difference itself.” 

Equation notes from metan package in Stata: “Here the default is to add 0.5 to all cells of the 2 × 
2 table for the study (except for the Peto method, which does not require a correction).” 

It has been shown, however, that the Mantel-Haenszel method with the 0.5 correction 
does not perform as well as the uncorrected Mantel-Haenszel method or with alternative 
correction factors. Hence, we advise against the use of the Mantel-Haenszel method with the 0.5 
correction.34 The investigators could choose adding no correction factors or exploring alternative 
correction factors using sensitivity analyses. Moreover, the Peto method of OR calculation does 
not require correction for zero cells counts, and it is only the variance of RD that requires non
zero cells and not the RD itself. Hence, Peto OR and RD should be considered as reasonable 
alternatives to RR (with or without adding 0.5 to each cell) in the setting of zero cell counts. 

When both study arms have zero events, the relative measures (OR and RR) are not 
defined which can be problematic. These studies are usually excluded from the analysis as they 
do not provide information on the direction and magnitude of the effect size. Others consider 
including studies without events in the analyses to be important and choose to include them 
using correction factors. The Peto method and the Mantel-Haenszel method effectively exclude 
these studies from the analysis by assigning them zero weight. On the other hand, when the 
investigators estimate a combined control event rate, the zero events studies should be included, 
and we recommend the random effects logistic model that directly models the binomial 
distribution. As an alternative, the RD can be computed if that is an acceptable metric because 
zero cell counts influence the computation of variance but not the effect size directly. See Table 
2.4 for implications of the various methods of handling zero cell counts. Finally, if studies are 
excluded because of zero events in both study arms, they should be qualitatively summarized in 
the narrative section of the meta-analysis. 
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Table 2.4: Interpretive implications for handling of zero cell counts 

Intervention Control 

Study Events No 
Events 

Events No 
Events 

RR* RR (0.9 
added) 

OR* Peto OR RD 

Study A 0 100 5 99 0.095 0.159 0.090 0.135 -0.048 

Study B 1 98 7 100 0.154 0.154 0.146 0.229 -0.055 

Study C 10 400 18 396 0.561 0.561 0.550 0.559 -0.019 

Study D 0 54 1 58 0.364 0.516 0.358 0.147 -0.017 

Study E 0 210 0 200 Excluded Excluded Excluded Excluded -0.000 

Study F 2 82 4 79 0.494 0.494 0.482 0.497 -0.024 

* = 0.5 added to event and no event cells in the case of zeros in one study arm 

2.2 Continuous Outcomes 

Assembling Data Needed for Effect Size Computation 

Once one has determined that a meta-analysis of a continuous outcomes will be 
performed, one must assemble from each included trial what will be needed to compute a pooled 
estimate. Regardless of which method one uses, this will boil down to acquiring an estimate of 
the difference between the two groups being compared, and an estimate of the standard error 
around the difference. 

Estimating the difference between the two groups can be done most easily if the study 
gives us directly what we need. This would most commonly be the mean difference; although 
both standardized mean difference and ratio of means could possibly be given by the study 
authors. Most often, though we are given the means for each group from which we can readily 
compute a mean difference or ratio of means; combined with other pieces of information (see 
below) we can also compute standardized mean difference. 

Estimates of the standard error around the mean difference can come from many sources. 
These include direct reporting of standard error or confidence interval of mean differences or 
other estimates. More commonly, you will be given confidence intervals, standard deviations, p-
values, z-statistics, and t-statistics for which it will be possible to compute the standard error of 
the estimate of mean difference. In the absence of any of these statistics, other methods are 
available to estimate standard error (see recommendations for handling missing data). 

More details of what precisely is needed for computations will be given in each of the 
corresponding sections below: 
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Choosing Among Effect Size Options 

Details on how to compute these estimates can be found in previous AHRQ guidance document 
on continuous methods.5 

(Weighted) Mean Difference 

The mean difference (formerly known as weighted mean difference, but the “weighted” 
is usually dropped since it contains a subtle false implication that a pooled standardized mean 
difference is not weighted) is the most common way of summarizing and pooling a continuous 
outcome in a meta-analysis. Pooled mean differences can be computed when every study in the 
analysis measured the outcome on the same scale or on scales that can be easily converted. For 
example total weight could be pooled using mean difference even if different studies reported 
weights in kilograms and pounds; however it would not be possible to pool quality of life 
measured in both Self Perceived quality of life scale (SPQL) and the 36-item Short Form Survey 
Instrument (SF-36), since these are not readily convertible to one format. 

Computation of mean difference is quite straightforward and readily explained 
elsewhere.5 Most software programs will require the mean, standard deviation and sample size 
from each intervention group and for each study in the meta-analysis, although other pieces of 
information will make the computation possible. 

Some studies may report values as change from baseline, or alternatively present both 
baseline and final values. In these cases it is possible to pool final values with change from 
baseline values, although if baseline values are unbalanced it may be better to perform 
ANCOVA analysis (see below).5 

Standardized Mean Difference 

Sometimes different studies will assess the same outcome using different scales or 
metrics that cannot be readily converted to a common measure. In such instances computing a 
standardized mean difference (SMD) for each study and then pooling these across all studies in 
the meta-analysis is the most common method of dealing with this situation. By essentially 
dividing the mean difference by a pooled estimate of the standard deviation, we theoretically put 
all scales in the same unit (that being standard deviation), and are then able to statistically 
combine all the studies. 

There are several methods that have been used to compute SMDs. The most frequent ones 
encountered are Cohen’s d, Hedges’ g, and Glass’ Δ. 

Cohen’s d 

Cohen’s d is the simplest SMD computation; it is defined as the mean difference divided 
by the pooled standard deviation.5 It has been shown that this estimate is biased in estimating the 
true population SMD, and the bias decreases as the sample size increases (small sample bias).35 

For this reason Cohen’s d is not used as much as Hedges g. 
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Hedges’ g 

Hedges’ g is a transformation of Cohen’s d that attempts to adjust for the small sample 
bias inherent in the latter. The transformation involves multiplying Cohen’s d by a function of 
the total sample size.5 This generally results in a slight decrease in value of Hedges’ g compared 
to Cohen’s d, but the reduction lessens as the total sample size increases. For very large sample 
sizes the two will be very similar. The resultant reduction in bias of Hedges’ g has made it 
generally more preferred compared to Cohen’s d. 

Back Transformation of Pooled SMD 

One of the biggest disadvantages of the standardized mean difference is its lack of 
transparency in terms of being easily understandable by clinicians. SMDs are in units of standard 
deviation which makes it difficult to interpret clinically. Guidelines do exist but these are often 
thought to be arbitrary and not applicable to all situations.36 

An alternative solution is to back transform the pooled SMD into the original scales used 
in the one of the analyses. In theory, by multiplying the SMD (and its upper and lower 
confidence bounds) by the standard deviation of the original scale, one can obtain a pooled 
estimate in that original scale. The difficulty is that the true standard deviation is unknown and 
must be estimated from available data. Suggested methods for this include using the SD from the 
largest study or using a pooled estimate of the SDs across studies.5 

Ratio of Means 

Ratio of Means (RoM) has been presented as an alternative to the SMD when outcomes 
are reported in different non-convertible scales. As the name implies the RoM divides the 
treatment mean by the control mean rather than taking the difference between the two. The ratio 
can be interpreted as the percentage change in the mean value of the treatment group relative to 
the control group. By meta-analyzing across studies we are making the assumption that the 
relative change will be homogeneous across all studies, regardless of which scale was used to 
measure it. Similar to the risk ratio and odds ratio, the RoM is pooled on the log scale; 
computational formulas are readily available.5 

For the RoM to have any clinical meaning, it is required that in the scale being used, the 
values are always positive (or always negative) and that a value of “zero” truly means zero. For 
example if the outcome were patient temperature, RoM would be a poor choice since a 
temperature of 0 degrees does not truly represent what we would think of as zero. As a result the 
same temperatures measured in degrees Celsius or degrees Fahrenheit would have different 
ratios when converted. 

There is currently research being done to compare clinical interpretability of RoM versus SMD. 

Special Topics 

Crossover Trials 
A crossover trial is one where all patients receive, in sequence, both the treatment and 

control interventions. This results in the final data having the same group of patients represented 
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with both their outcome values while in the treatment and control groups. When computing the 
standard error of the mean difference of a crossover trial, one must consider the correlation 
between the two groups.5 For most variables, the correlation will be positive, resulting in a 
smaller standard error than would be seen with the same values in a parallel trial. 

To compute the correct pooled standard error requires an estimate of the correlation 
between the two groups. Most studies do not give the correlation or enough information to 
compute it, and thus it often has to be estimated based on investigator knowledge or imputed.5 

Cluster Randomized Trials 
Cluster trials occur when patients are randomized to treatment and control in groups (or 

clusters) rather than individually. If the units/subjects within clusters are positively correlated (as 
they usually are), then there is a loss of precision compared to a standard (non-clustered) parallel 
design. The design effect (DE) of a cluster randomized trial reflects this increase. Reported 
results from cluster trials may not reflect the design effect, and thus it will need to be computed 
by the reviewer. 

Computation of the design effect involves a quantity known as the intra-class correlation 
coefficient (ICC), which is defined as the proportion of the total variance (i.e. within cluster 
variance plus between cluster variance) that is due to between cluster variance.5 ICC’s are often 
not reported by cluster trials and thus a value must be obtained from external literature or a 
plausible value must be assumed by the investigator. 

Mean Difference and Baseline Imbalance 
Baseline imbalance in trials occurs when an important variable shows clinically important 

differences (by chance) between the intervention and control groups. If one is given both 
baseline and follow up times, there are three possible ways to compute a mean difference 
between groups: 

1. Use follow up data to compute mean difference. 
2. Use change from baseline data to compute mean difference. 
3. Use an ANCOVA model to compute a mean difference that adjusts for the effects of 

baseline imbalance.37 

As long as trials are balanced at baseline, all three methods will give similar unbiased estimates 
of mean difference.5 When baseline balance is present, it can be shown that using the ANCOVA 
will give the best estimate of the true mean difference; however the parameters required to 
perform this analysis (mean and standard deviations of baseline, follow-up and change from 
baseline values) are usually not provided by the study authors.38 If it is not feasible to perform an 
ANCOVA analysis, the choice of whether to use follow up or change from baseline values 
depends on the amount of correlation between baseline and final values. If correlation is greater 
than 0.5, then change from baseline values will be less biased—otherwise the follow up values 
will have less bias. There is evidence that these correlations are more often greater than 0.5, so 
the change from baseline means will usually be preferred if estimates of correlation are totally 
unobtainable.39 A recent study 40 showed that three methods were unbiased when there were 
both few trials and small sample sizes within the trials. 
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Chapter III: Choice of Statistical Model for Combining 
Studies 

3.1 Introduction 
Meta-analysis can be performed using either a fixed or a random effects model to provide 

a combined estimate of effect size. A fixed effects model assumes that there is one single 
treatment effect across studies, and any differences between observed effect sizes are due to 
sampling error. Under a random effects model, the treatment effects across studies are assumed 
to vary from study and study and follow a random distribution. The differences between 
observed effect sizes are not only due to sampling error, but also to variation in true treatment 
effects. A random effects model usually assumes that the treatment effects across studies follow 
a normal distribution, though the validity of this assumption may be difficult to verify, especially 
when the number of studies is small. Alternative distributions42 or distribution free models43, 44 

have also been proposed. 
Recent advances in meta-analysis include the development of alternative models to fixed 

or random effects model. For example, Doi et al. proposed an inverse variance heterogeneity 
model (the IVhet model) for the meta-analysis of heterogeneous clinical trials that uses an 
estimator under the fixed effect model assumption with a quasi-likelihood based variance 
structure.45 Stanley and Doucouliagosb (2015) proposed an unrestricted weighted least squares 
estimator for meta-analysis and claimed superiority to both conventional fixed and random 
effects.46 However, these methods have not been compared to the many estimators developed 
within the framework of the fixed and random effects model and are not readily available in most 
statistical packages; thus will not be further considered in the current guidance. 

3.2 General Considerations for Model Choice 

Considerations for model choice include many factors including but not limited to 
heterogeneity across treatment effects, the number and size of included studies, the type of 
outcomes, and potential bias. Generally, a fixed effects model is not advised in the presence of 
significant heterogeneity. We recommend against choosing a statistical model based on the 
significance level of heterogeneity test, for example, picking a fixed effect model when the p-
value for heterogeneity is more than 0.10 and a random effects model when P < 0.10. 

In practice, clinical and methodological diversity are always present across a set of 
included studies.  Variation among studies is inevitable whether or not the test of heterogeneity 
detects it. Therefore, we recommend random effects models, with exceptions for rare binary 
outcomes (discussed in more details under combining rare binary outcomes).  The considerations 
for the choice of random effects models and alternative estimators for the effect measures will be 
discussed in the next section. When the estimate of between-study heterogeneity is zero, for 
common binary outcomes, a fixed effects model (e.g., the Mantel-Haenszel method, inverse 
variance method, Peto method (for OR), or fixed effects logistic regression) could be used and 
provide similar estimates to the random effects model. Peto method requires that no substantial 
imbalance exists between treatment and control group sizes within trials and treatment effects are 
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not exceptionally large. 
When a system review include both small and large studies, and the results of small 

studies are systematically different from those of the large ones, publication bias may be present 
and the assumption of a random distribution assumption is not justified. Other potential reasons 
that may lead to this systematic difference should also be examined. In this case, neither the 
random effects model nor the fixed effects model would provide an appropriate estimate and 
reviewers may choose not combining all the studies.15 Investigators can choose to combine the 
large studies if they are well conducted with good quality and expected to provide unbiased 
effect estimates. 

3.3 Choice of Random Effects Model and Estimate 

The most commonly used random effects model is based on an estimator developed by 
DerSimonian and Laird (DL) due to its simplicity and ease of implementation.47 It is well 
recognized that the estimator does not adequately reflect the error associated with parameter 
estimation, in particular, when the number of studies is small, and between-study heterogeneity 
is high.40 Refined estimators have been proposed by the original authors. 48-50 Other estimators 
have also been proposed to improve the DL estimator. Sidik and Jonkman (SJ) and Hartung and 
Knapp(HK) independently proposed a non-iterative variant of the DL estimator using t-
distribution and an adjusted confidence interval for the overall effect.51,52, 53 Biggerstaff–Tweedie 
(BT) proposed another variant of the DL method by building error in the point estimate of 
between study heterogeneity into the estimation of the overall effect.54 There are also many other 
likelihood based estimators such as maximum likelihood estimate, restricted maximum 
likelihood estimate and profile likelihood (PL) methods, which account better for the uncertainty 
in the estimate of between-study variance.48 

Several simulation studies have been conducted to compare the performance of the 
different estimators,48, 55-59 and most of these studies compared a few selected methods. For 
example, Brockwell et al. (2001) showed that the PL method provides an estimate with better 
coverage probability than the DL method.  Jackson et al. (2010) showed similar results that when 
the number of studies is small, the DL method does not provide adequate coverage probability, 
in particular, when there is moderate to large heterogeneity.55 However, their results supported 
the usefulness of the DL method for larger samples. In contrast, the PL estimates result in 
coverage probability closer to nominal values. IntHout et al. (2014) compared the performance 
of the DL and HKSJ methods and showed that the HKSJ method consistently results in more 
adequate error rates than the DL method, especially when the number of studies is small, though 
they did not evaluate coverage probability and power.59 Nevertheless, Kontopantelis and Reeves 
(2012a and 2012b)56, 58 conducted the most comprehensive simulation studies to compare the 
performance of nine different methods and evaluated multiple performance measures including 
coverage probability, power and overall effect estimation (accuracy of point estimates and error 
intervals). When the goal is to obtain an accurate estimate of overall effect size and the 
associated error interval, and by balancing the multiple performance measures, they recommend 
using the DL method when the heterogeneity is low and using the PL method when the 
heterogeneity is high, where the threshold of heterogeneity varies by the number of studies. PL 
method overestimates coverage probability in the absence of between-study heterogeneity. 
Methods like BT and SJ, despite being developed to address the limitation of the DL method, 
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were noted to be frequently outperformed by the DL method when considering the multiple 
measures. Encouragingly, Kontopantelis and Reeves also showed that regardless of the 
estimation method, results are highly robust against even very severe violations of the 
assumption of normally distributed effect sizes. 

Recently there has been a call to use alternative random-effects estimators to replace the 
universal use of the Dersimonian-Laird random effects model.60 Based on the results from the 
simulation studies, the PL method appears to generally perform best, and provides best 
performance across more scenarios than other methods, though it may overestimate the 
confidence intervals in small studies with low heterogeneity. It is also appropriate if the EPC 
investigators choose to use the DL method when the heterogeneity is low and use the PL method 
when the heterogeneity is high and determines the threshold of heterogeneity based on the 
number of studies.56 The disadvantage of the PL method is that it does not always converge and 
produce valid estimate. In those situations, investigators may choose the DL method with 
sensitivity analyses using other methods, such as the HKSJ method. If the non-convergence is 
due to a lot of heterogeneity, the investigators should also reevaluate the appropriateness of 
combining the studies. The PL method (and the DL method) could be used to combine measures 
for continuous, count and time to event data, as well as binary data when the events are common. 
Also note that the confidence interval produced by the PL method may not be symmetric. For 
OR, RR, HR and incidence rate ratio, they should be analyzed on the logarithmic scale. In 
addition, we also support the use of the full Bayesian method to combine estimates since it takes 
the variations in all parameters into account (see more in the section of Bayesian methods). 

Role of Generalized Linear Mixed Effects models 

The different methods and estimators discussed above are generally used to combine 
effect measures directly (for example, mean difference, SMD, OR, RR, HR and incidence rate 
ratio). For study-level aggregated binary data and count data, we also support the use of 
generalized linear mixed effects model assuming random treatment effects. For aggregated 
binary data, a combined OR could be generated by assuming the binomial distribution with a 
logit link. It is also possible to generate a combined RR with the binomial distribution and a log 
link, though the model does not always converge and produce a valid combined estimate. For 
aggregated count data, a combined rate ratio could be generated by assuming the Poisson 
distribution with a log link. The advantage of such models is to model the exact likelihood of 
aggregated binary data and count data. Results from using the generalized linear models and 
directly combining effect measures are similar when the number of studies is large and/or the 
sample sizes are large. 

3.4 A Special Case: Combining Rare Binary Outcomes 

When comparing rare binary outcomes (such as adverse event data), few or zero events 
often occur in one or both arms in some of the included studies. The normal approximation of the 
binomial distribution does not hold well and choice of model becomes complicated. The 
DerSimonian-Laird (DL) method does not perform well with low-event rate binary data.61,62 A 
fixed effects model often out performs the DL method for rare events based on simulation study, 

27
 



     
     

     
  

    
    

  
 
   

   
    

   
    

     
  

  
  

  
  

      
   

  
     

   
 

     
   

 
  

    
 

   
 

  
  

 
  

 
 

 

  

 
 

even under the conditions of heterogeneity,34 Within the past few years, many methods have 
been proposed to analyze sparse data from simple average,63 exact methods,73, 74 Bayesian 
approach64, 65 to various parametric models (e.g. generalized linear mixed effect models, beta-
binomial model, Gamma-Poisson model, bivariate Binomial-Normal model etc). Two 
dominating opinions are to 1) move away from the use of continuity corrections, and 2) include 
studies with zero events in both arms in the meta-analysis. Great efforts have been made to the 
development of methods that could include studies with zero events in both arms in the meta-
analysis. 

In earlier simulation studies, when event rates are less than 1 percent, the Peto OR 
method has been show to provide the least biased, most powerful combined estimates with the 
best confidence interval coverage,61 if the included studies have moderate effect sizes and the 
treatment and control group are of relatively similar sizes. The Peto method does not perform 
well when either the studies are unbalanced or the studies have large ORs (outside the range of 
0.2-5).66, 67 Otherwise, when treatment and control group sizes are very different or effect sizes 
are large, or when events become more frequent (5 percent to 10 percent), the Mantel-Haenszel 
method (without correction factor) or a fixed effects logistic regression provide better combined 
estimates. 

Dealing with studies with zero events in one or both arms 

Bhaumik et al. (2012) proposed the simple (unweighted) average (SA) treatment affect 
with the 0.5 continuity correction, and found out that the bias of the SA estimate in the presence 
of even significant heterogeneity is minimal compared to MH estimates (with 0.5 correction), 
and a simple average was also advocated by Shuster (2010). 63, 68 However, the issue of 
confounding always remains for an unweighted estimate. Spittal (2015) showed that Poisson 
regression works better than the inverse variance method for rare events but the inverse variance 
method is generally not preferred anyway.69 Kuss et al. (2015) conducted a comprehensive 
simulation of eleven methods that could combine rare binary events including most recent 
developed methods, and recommend the use of beta-binomial model for the three common 
estimators (OR, RR and RD) as the preferred meta-analysis methods for rare binary events with 
studies of zero events in one or both arms.70 They examined methods that could incorporate data 
from studies with zero events from both arms, and do not need any continuity correction, and 
only compared the Peto and MH methods as reference methods.  Ma et al. (2016) also showed 
that the binomial-beta approach tends to have substantially smaller bias and mean squared error 
than Binomial-Normal approach for rare events < 5%.71 

Given the development of methods that could handle studies with zero events in both 
arms, we agree to avoid methods that use continuity corrections should be avoided. Investigators 
should use valid methods that include studies with zero events in one or both arms. For studies 
with zero events in one arm, or studies with sparse binary data but no zero events, an estimate 
can be obtained using the Peto method, the Mantel-Haenszel method, or a logistic regression 
approach, without adding a correction factor, when the between study heterogeneity is small. 
These methods are simple to use and more readily available in standard statistical package. 
When the between study heterogeneity is large, and there are studies with zero events in both 
arms, the more recently developed methods, such as beta-binomial model could be explored and 
used. However, investigators should note that no method gives completely unbiased estimates 
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when events are rare. The issue of sparse data could never be completely solved by statistical 
methods; investigators should always conduct sensitivity analysis using alternative methods to 
check the robustness of results to different methods, and acknowledge the inadequacy of data 
sources when presenting the data synthesis results, in particular, when the proportion of studies 
with zero events in both  arms are high. 

A risk-difference (RD) may be favored because it includes zero-event studies and is 
easily interpretable.72 The RD can also be used to calculate the Number Needed to Harm 
(NNH).73 It is not preferred when there is heterogeneity between studies in duration and incident 
rates. The RD has been show to lack power.61 

If double-zero studies are to be excluded, they should be qualitatively summarized, by 
providing information on the confidence intervals for the proportion of events in each arm. 

A note on exact method for sparse binary data 

For rare binary events, the normal approximation and asymptotic theory for large sample 
size don’t work satisfactorily and exact inference has been developed to overcome these 
limitations. Also exact methods don’t need continuity corrections. However, simulation analyses 
did not identify a clear advantage of early developed exact methods74, 75 over a logistic regression 
or the Mantel-Haenszel method even in situations where these exact methods would theoretically 
be advantageous.61 Recent developments of exact method includes Tian et al.'s method of 
combining confidence intervals76 and Liu et al.'s method of combining p-value functions.77 Yang 
et al.78 developed a general framework for meta-analysis of rare events by combining confidence 
distributions (CDs), and showed that Tian’s and Liu’s methods could be unified under the CD 
framework. Liu showed that exact methods performed better than the Peto method (except when 
studies are unbalanced) and the Mantel-Haenszel method,77 though the comparative performance 
of these methods has not been thoroughly evaluated. Therefore the investigators may choose to 
use exact methods with considerations for the interpretation of effect measures but we don‘t 
specifically recommend exact methods over other models discussed above. 

3.5 Bayesian Methods 

The Bayesian framework can provide a unified and comprehensive approach to meta-
analysis. This framework accommodates a wide variety of reported outcomes, and allows a 
common approach in which pairwise meta-analysis is a special case of network meta-analysis. 
Rather than thinking of meta-analysis as a collection of procedures, this approach emphasizes 
that meta-analysis is “just regression” where outcomes are nested within trials.79 Generalized 
linear modeling (GLM) theory provides for normal, binomial, Poisson and multinomial 
likelihoods, with various link functions, providing common core models for the lin/ear predictor. 
This leads to a modular approach: different likelihoods and link functions are employed, but the 
“synthesis” operation, which occurs at the level of the linear predictor, takes the exact same form 
in every case.80 This flexibility has a number of advantages, detailed below: 
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1.	 It is not necessary to use approximate normal likelihoods. ‘Exact’ likelihoods (e.g. 
binomial) can be specified. Thus, the number of events and number of individuals in each 
study arm are specified, without the need for continuity correction.34 

2.	 Within this modular framework, generalization to meta-regression models is easily 
accomplished by adding study level covariates to the linear predictor. However, centering 
of covariates may be needed to facilitate estimation using MCMC sampling.81 

It should be noted that these GLM models are routinely implemented in the frequentist 
framework, and not specific to the Bayesian framework. However, extensions to more complex 
challenges are most approachable using the Bayesian framework, for example, allowing for 
mixed treatment comparisons involving repeated measurements of a continuous outcome that 
varies over time.82 

There are several specific advantages inherent to the Bayesian framework: 

The Bayesian posterior parameter distributions fully incorporate the uncertainty of all 
parameters.  These posterior distributions need not be assumed to be normal.83 In random-effects 
meta-analysis, standard methods use only the most likely value of the between-study variance,47 

rather than incorporating the full uncertainty of each parameter . Thus, Bayesian credible 
intervals will tend to be wider than confidence intervals those from a classical random-effects 
analysis.84 However, when small numbers of studies are available, the between study variance 
will be poorly estimated by both traditional and Bayesian methods. Indeed, this is an example 
where the use of vague priors can be problematic, and can lead to a marked variation in results,85 

particularly when the model is used to predict the treatment effect in a future study.86 If a meta-
analysis is to be undertaken, plausible values for τ2 may be preferable to values estimated from 
very few studies. A natural alternative is to use an informative prior distribution, based on 
observed heterogeneity variances in other, similar meta-analyses.87-89 

Further, full posterior distributions provide a more informative summary of the likely value of 
parameters than do point estimates. Another advantage is that posterior distributions of functions 
of model parameters can be easily obtained. Thus, when communicating results of meta-analysis 
to clinicians, the Bayesian framework allows direct probability statements to be made such as the 
rank probability that a given treatment is best, second best, or worst.  Distinct from the choice of 
scale used for modeling treatment effects (e.g. odds ratios/logit scale), given information on the 
absolute effect of one treatment, it is possible to derive treatment effects (with credible intervals) 
on other scales such as risk difference, relative risk, or number(s) needed to treat.80 Finally, the 
Bayesian approach allows full incorporation of parameter uncertainty from meta-analysis into 
decision analyses.90 

Until recently, Bayesian meta-analysis required specialized software such as WinBUGS,91 

OpenBUGS,92 and JAGS.93, 94 Newer open source software platforms such as Stan95 and 
Nimble96, 97 provide additional functionality and use BUGS-like modeling languages. 

For analysts working in general Statistics programs (e.g. Stata and R) there are user written 
commands that allow data processing in a familiar environment which then can be passed to 
WinBUGS, or JAGS for model fitting.98 In R, the package bmeta currently generates JAGS code 
to implement 22 models.99 The R package gemtc similarly automates generation of JAGS code 
for network meta-analysis models and facilitate assessment of model convergence and 
inconsistency.100, 101 
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On the other hand, Bayesian meta-analysis could be implemented in commonly used statistical 
packages. For example, SAS PROC MCMC can now estimate at least some Bayesian 
hierarchical models102 directly, as can Stata, version 14, via the bayesmh command.103 

Both fixed and random effects models have been developed within a Bayesian framework for 
various types of outcomes. The Bayesian fixed effects model provides good estimates when 
events are rare for binary data.34 We support the use of Bayesian methods with vague priors in 
CERs, if the investigators choose Bayesian methods. When the prior distributions are vague, 
Bayesian estimates are usually similar to estimates using the above methods, though choice of 
vague  priors could lead to a marked variation in the Bayesian estimate of between-study 
variance when the number of studies is small.85 Use of informative prior is not prohibited but it 
takes careful considerations to avoid introducing biases into the posterior estimates. 
Investigations should provide adequate justifications for the choice of priors and conduct 
sensitivity analyses. The basic principle to guide the choice between a random effects and a fixed 
effect model is the same as that for the above non-Bayesian methods, though the Bayesian 
methods needs more work in programming, simulation and simulation diagnostic. 

A Note on Bayesian Method for Sparse Binary Data 

There was argument that Bayesian method might be a valuable alternative for sparse event data 
since Bayesian inference does not depend on asymptotic theory and take into account all 
uncertainty in the model parameters.104 However, the choice of prior distribution, even non-
informative ones, could have a big impact on the results, in particular, when a big proportion of 
studies have zero events in one or two arms.85, 105, 106 Nevertheless, other simulation studies 
found that when overall baseline rate is very small and there is moderate or large heterogeneity, 
the Bayesian hierarchical binomial - normal random-effect models can provide less biased 
estimates for the effect measures and the heterogeneity parameters.65 To reduce the impact of the 
prior distributions, objective Bayesian methods have been developed107, 108 with special attention 
paid to the coherence between the prior distributions of the study model parameters and the 
meta-parameter,108 thought the Bayesian model is developed outside the usual hierarchical 
normal random-effect framework. Further evaluations of these methods are required before 
recommendations for using these methods could be made. 

3.6 Multivariate Meta-Analysis 
Medical studies often examine multiple, and correlated, outcomes of interest to the meta-analyst. 
For example, in clinical trials of treating hyperlipidemia, the treatment effects on HDL, LDL and 
triglyceride are often evaluated; or both systolic and diastolic blood pressures would be 
measured in a hypertension study. Another situation is longitudinal outcome that were measured 
at multiple time points. These outcomes may be combined using multivariate meta-analysis. 

The multivariate meta-analysis is a generalization of the standard univariate meta-analysis 
model. There has been substantial advancement in multivariate meta-analysis methods in both 
frequentist and Bayesian framework in recent years,109-116 and some of these methods are readily 
available in statistical packages (for example, Stata mvmeta).  The multivariate meta-analysis 
allows estimation of multiple effects in a single modeling framework while taking into account 
the correlation among multiple outcomes with parameter estimates likely more precise.110 
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Further, the multivariate methods may have the potential to reduce the impact of outcome 
reporting bias.110, 117, 118 However, multivariate meta-analysis requires estimates of within-study 
correlations which are typically unknown. This remains the greatest difficulty of multivariate 
meta-analysis methods in practice and needs assumptions that may not always result in better 
inference. The gain in precision of parameter estimates is often marginal and the conclusions 
from the multivariate meta-analysis are often the same as those from the univariate meta-
analysis, which may not justify the increased complexity and difficulty of utilizing multivariate 
meta-analysis. 

With the exception of diagnostics testing studies (which provides a natural situation to meta-
analyze sensitivity and specificity simultaneously, but out of scope for this guidance) and 
network meta-analysis (a special case of multivariate meta-analysis with its unique challenges, 
see Chapter V on network meta-analysis), multivariate meta-analysis has not been widely used in 
practice. While multivariate meta-analysis holds its potentials, we currently don’t recommend its 
routine use. However, investigators are encouraged to explore multivariate meta-analysis when it 
likely brings considerable advantages, for example, when there is a large amount of missing data 
and borrowing of strength from correlated outcomes could lead to significant gain in the 
precision of the combined estimates, or reduced impact from outcome reporting bias. 
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Chapter IV: Quantifying, Testing and Exploring 
Statistical Heterogeneity 

4.1 Concepts of heterogeneity in meta-analysis 

In this chapter, it is assumed that a well-specified research question has been posed, the 
relevant literature has been reviewed, a set of trials meeting selection criteria have been 
identified and data from them has been abstracted and verified. Even when the review selection 
criteria are aimed toward identifying studies that are adequately homogenous, however, it is 
common for trials included in meta-analyses to differ considerably as a function of clinical 
and/or methodological heterogeneity. Clinical heterogeneity8, 119 and methodological 
heterogeneity5, 10-12, 15 have been reviewed in Chapter I. However, even when these sources of 
heterogeneity have been accounted for, there remains statistical heterogeneity that is the 
consequence of the degree of inconsistency in intervention effects among studies. Since 
statistical heterogeneity must be expected, quantified and sufficiently addressed in meta
analyses;120 therefore, we  sought  to  lay  the  foundation  for  investigators  to  address  the 
following questions: 

1) Is there evidence of heterogeneity in effect sizes across studies? 
2) What is the ratio of total and excess dispersion in effect sizes? 
3) What is the among-study variance of the true effects? 
4) What proportion of the observed heterogeneity is real vs. spurious? 
5) What can be done in instances of significant heterogeneity? 

4.2 Causes of heterogeneity 

As described in Chapter 1, clinical heterogeneity refers to characteristics related to the 
participants, interventions, outcomes and study setting, while methodological heterogeneity 
refers to variations in study methodology (e.g., study design, level of randomization, outcomes 
definition, statics reported and study conduct). Clinical and methodological heterogeneity should 
inform the decision to combine studies prior to formal meta-analysis.8 Once the decision to 
combine studies is deemed acceptable, our attention must turn toward quantifying, exploring and 
explaining statistical heterogeneity as a product of meta-analysis. 

4.3 Quantifying heterogeneity 

Quantitative methods can assist in many analytic goals related to heterogeneity: they can 
provide evidence of heterogeneity in effect sizes across studies, the ratio of total and excess 
dispersion in effect sizes, the among-study variance of the true effects, and proportion of the 
observed heterogeneity that is real vs. spurious. 

Heterogeneity in effect sizes across studies 
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DerSimonian and Laird proposed an estimator of Q that can and should be computed as a 
metric of heterogeneity in effect sizes across studies.47 Although Q formula notation can vary, 
the following provides an example formula that is useful for direct computation: 

𝑄𝑄 =  𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − �̂�𝜇𝐹𝐹)2 

Where Q is the metric of heterogeneity in effect sizes across studies, 
w is the study weight based on inverse variance weighting, 
y is the observed effect size in each trial, and 
�̂�𝜇𝐹𝐹 is the summary estimate in a fixed-effect meta-analysis. 

This heterogeneity estimator is very popular in applied research and has been 
implemented in practically all meta-analysis software as a default. Since Q is derived from fixed-
effect meta-analysis there are underlying assumptions that studies share a common effect size, 
and that all variation between studies is due to sampling error. Hence, there is an expected degree 
of variation that is equivalent to the degrees of freedom, and all variation in effect sizes beyond 
what is expected can be considered excess dispersion. Therefore, a simple but informative metric 
of excess dispersion is: 

𝑄𝑄 − (𝑘𝑘 − 1) 

Where Q is the metric of heterogeneity in effect sizes across studies, and 
k -1 is the degrees of freedom. 

Assuming that Q follows a χ2 distribution with k – 1 degrees of freedom, it also can be 
used in a null hypothesis test of homogeneity vs. an alternative hypothesis of heterogeneity in 
intervention effects across studies. Hence, Q is typically presented along with a p-value. 
Interpretation of a Q statistic in isolation is not advisable however, because it has low statistical 
power in meta-analyses involving a limited number of studies121, 122 and may detect unimportant 
heterogeneity when the number of studies included in a meta-analysis is large. Most importantly, 
since heterogeneity is expected in meta-analyses irrespective of whether or not we have 
statistical tests to support that claim, non-significant Q statistics must not be interpreted as the 
absence of heterogeneity. Instead, the Q statistic in each instance must be interpreted along with 
other heterogeneity statistics and under full consideration of its strengths and limitations. 

Among-study variance and standard deviation 

DerSimonian and Laird also proposed a non-iterative method-of-moments estimator of 
between-study variance (τ2)47 that was later described more appropriately by Higgins et al.16 as 
‘among-study variance:’ 

𝑄𝑄 − (𝑘𝑘 − 1) 2�̂�𝜏𝐷𝐷𝐷𝐷 = 2
∑ 𝑤𝑤𝑖𝑖 − 

∑ 𝑤𝑤𝑖𝑖
∑ 𝑤𝑤𝑖𝑖 
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Where τ2 is the estimate among-study variance of the true effects,
 
DL is the DerSimonian and Laird approach to τ2 estimation,
 
Q is the heterogeneity in effect sizes across studies (as above),
 
k -1 is the degrees of freedom, and 

w is the weight applied to each study based on inverse variance weighting. 


The interpretation of τ2 is the among-study variance of the true effects. Since variance in 
true effects cannot be less than zero, estimates of τ2 that are less than zero are set to zero. The 
value of τ2 is integrated into the weights of random-effects meta-analysis as presented in Chapter 
III. An additional benefit of the τ2 estimate is that it can help in the interpretation of the relevance 
of the variance in effects across studies because unlike the Q statistic, τ2 remains in the metric of 
the effect size (e.g. RR, SMD et al.). Moreover, since the τ2 estimate is a variance statistic, we 
can compute the standard deviation in effect sizes across studies by taking the square root of the 
τ2 estimate (i.e. τ). Since our estimates of τ2 and τ remain the in the metric of the effect size, 
investigators can comment on the among-study variance of the true effects and the standard 
deviation of true effects observed across studies using similar language as can be used to discuss 
the overall pooled estimates. Using heterogeneity statistics that are in the metric of the effect size 
are particularly helpful in instances where minimally important/clinically meaningful differences 
are well established. 

Inconsistency across studies 

Another statistic that should be generated and interpreted even in cases where Q is not 
statistically significant is the proportion of variability in effect sizes across studies that is 

16, 123 explained by heterogeneity vs. sampling error (i.e. beyond chance) or I2.

𝑄𝑄 − (𝑘𝑘 − 1) 
𝐼𝐼2 = ∗ 100

𝑄𝑄 

Where Q is the heterogeneity in effect sizes across studies, and 
k -1 is the degrees of freedom. 

More than other heterogeneity statistics presented in this chapter, the I2 is metric of how 
much heterogeneity is influencing the meta-analysis. With a range from 0% (indicating no 
heterogeneity) to 100% (indicating that all of the observed variance is real vs. spurious), the I2 

statistic has several advantages over other heterogeneity statistics including its relative 
simplicity, ease of interpretation across meta-analyses, lack of direct dependence on the number 
of studies included in the meta-analysis, and focus on how heterogeneity may be influencing 
interpretation of the meta-analysis.9 By various means, confidence/uncertainty intervals can be 
estimated for I2 including the following common example based on Higgins’ test-based 
method:12,17 

ln(𝑄𝑄)−ln(𝑑𝑑𝑑𝑑)𝐵𝐵 = 0.5 × when Q > (df + 1), or 
2𝑄𝑄− 2 ×(𝑑𝑑𝑑𝑑)−1 

𝐵𝐵 = 0.5 ×  
1

1 when Q ≤ (df + 1) 
2×(𝑑𝑑𝑑𝑑−1)×(1−(

3×(𝑑𝑑𝑑𝑑−1)2
) 
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𝐿𝐿 = 𝑒𝑒𝑒𝑒𝑒𝑒 0.5 × ln  
𝑄𝑄 

𝑑𝑑𝑑𝑑
 − 1.96 × 𝐵𝐵 

𝑈𝑈 = 𝑒𝑒𝑒𝑒𝑒𝑒 0.5 × ln  
𝑄𝑄 

𝑑𝑑𝑑𝑑
 + 1.96 × 𝐵𝐵 

= 
𝐿𝐿2 − 1

𝐿𝐿𝐿𝐿𝐼𝐼2  × 100% 
𝐿𝐿2 

= 
𝑈𝑈2 − 1

𝑈𝑈𝐿𝐿𝐼𝐼2  × 100% 
𝑈𝑈2 

Where Q is the heterogeneity in effect sizes across studies, and 
df is the degrees of freedom. 

Hence, another benefit of the I2 over other heterogeneity statistics is the ability to provide 
confidence intervals as a means of being transparent about inherent uncertainty in the variability 
in effect sizes across studies that is explained by heterogeneity vs. sampling error.9 It is important 
to note that since the I2 is based on Q, any problems that influence Q (most notably the number 
of trials included in the meta-analysis) will also indirectly interfere with the computation of I2. 
Although it is important to note that assumptions involved in the construction of 95% confidence 
intervals cannot be justified in all cases, I2 confidence intervals based on frequentist assumptions 
generally provide sufficient coverage of uncertainty in meta-analyses.123 

Based primarily on the observed distributions of I2 across meta-analyses, there are ranges 
that are commonly used to further categorize heterogeneity. That is, I2 values of 25%, 50% and 
75% have been proposed as working definitions of what could be considered low, moderate and 
high proportions, respectively, of variability in effect sizes across studies that is explained by 
heterogeneity vs. sampling error.9 Currently, the Cochrane manual also includes ranges for 
interpreting I2 (0%-40% might not be important, 30%-60% may represent moderate 
heterogeneity, 50-90% may represent substantial heterogeneity and 75-100% may represent 
considerable heterogeneity).15 Irrespective of which categorization of I2 is used, this statistic 
must be interpreted with the understanding of several nuances, including issues related to a small 
number of studies (i.e. fewer than 10),18, 19,20 and inherent differences in I2 comparing binary and 
continuous effect sizes.21, 22 Moreover, I2 of zero is often misinterpreted in published reports as 
being synonymous with the absence of heterogeneity despite upper confidence interval limits 
that most often would exceed 33% when calculated.124 Finally, a high I2 does not necessarily 
mean that dispersion occurs across a wide range of effect sizes, and a low I2 does not necessarily 
mean that dispersion occurs across a narrow range of effect sizes; the I2 is as signal-to-noise 
metric not a statistic about the magnitude of heterogeneity. 

4.4 Tests for the Null Hypothesis of Homogeneity 
Themostcommonlyassessedhypothesis for heterogeneity inmeta-analysis is: 
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H0 : θi = θ for all i, 

Where the null hypothesis is homogeneity (i.e. all studies have the same true effect 
parameter that may or may not be equivalent to zero), and the implicit alternative hypothesis that 
at least one study has an effect that is different from θ. It also is possible to apply directional 
alternative hypotheses involving the direction of the relationship (e.g. at least one study had a 
larger effect than θ. As described above, assumptions of certain heterogeneity statistics (like Q 
that follows a χ2 distribution with k – 1 degrees of freedom) can be tested statistically. But, the Q 
must be interpreted in consideration of the other heterogeneity metrics because alone the Q 
statistic needs to be interpreted carefully (as described above). 

Example of non-significant heterogeneity 

The figure below (Figure 4.1) is an example of heterogeneity statistics generated with a 
DerSimonian and Laird (D+L) random effects meta-analysis of 22 trials with a binary outcome 
estimating risk ratio (RR). Note that although the heterogeneity statistics are associated with a 
random effects meta-analysis, they are in fact generated from a fixed-effect model using the 
inverse variance method of estimation. 

Figure 4.1. Output of a meta-analysis without significant heterogeneity 

Is there evidence of heterogeneity in effect sizes? In this instance, the heterogeneity statistic 
(Q) is 29.76, and we do not have sufficient evidence to refute the null hypothesis of homogeneity 
with a p-value that exceeds 0.05. Hence, we can conclude that there is homogeneity in effect 
sizes across studies or in other words that there is no significant heterogeneity. We must use 
caution and avoid interpreting the non-significant heterogeneity as no heterogeneity because the 
number of trials in this meta-analysis is quite low and because of empirical evidence that 
heterogeneity exists whether or not we can detect it statistically. 

What is the ratio of total to excess dispersion in effect sizes? In this instance, the Q of 29.76 is 
greater than the model degrees of freedom (i.e. 21). Hence we have some excess dispersion in 
effect sizes given the number of studies included. But, we have already learned from prior testing 
that there is homogeneity in effect sizes. Therefore, in this instance the excess to total dispersion 
is not very informative. 
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What is the between-study variance of the true effects? The τ2 remains in the metric of the 
effect size. In this example, the τ2 of 0.0132 indicates limited variance in risk ratio across studies. 
The small value of τ2 also is concordant with findings of homogeneity and limited excess 
dispersion from the statistics above. 

Are there substantive implications of this heterogeneity? Although much more informative in 
instances of significant heterogeneity, we can convert the τ2 to τ by taking the square root of τ2. 
Doing so allows us to consider the standard deviation of dispersion in effects sizes across studies 
(as opposed to variance). In this example, the standard deviation of dispersion in effects sizes 
across studies (τ) in the metric of risk ratio is 0.11. In combination, the pooled estimate in risk 
ratio of 0.757 and the standard deviation of dispersion in effects sizes across studies in risk ratio 
of 0.11 may help making claims about the substantive implications of heterogeneity. In this 
example, however, we have evidence of homogeneity in effect sizes across studies. Thus, 
reporting additional metrics beyond the heterogeneity chi-square (Q) and associated p-value 
would facilitate transparency in presentation but may otherwise be minimally informative. 

What proportion of the observed heterogeneity is real vs. spurious? Although the variation 
in effect sizes across studies was minimal (non-significant Q, minimal excess dispersion (Q-df), 
and small τ2 and τ), the proportion of the variation in risk ratio across studies attributable to 
heterogeneity (I2) in this example was 29.4%. Even in instances of significant heterogeneity in 
effect sizes across studies, an I2 of 29.4% would be considered low. In this example, there was 
not significant heterogeneity in effect sizes across studies; but, knowing the proportion of 
variance in effects that was due to heterogeneity is informative. 

Example of significant heterogeneity 

The figure below (Figure 4.2) is an example of heterogeneity statistics generated with a 
DerSimonian and Laird (D+L) random effects meta-analysis of 20 trials with a continuous 
outcome estimating standardized mean difference (SMD). Note that although the heterogeneity 
statistics are associated with a random effects meta-analysis, they are in fact generated from a 
fixed-effect model using the inverse variance method of estimation. 

Figure 4.1. Output of a meta-analysis with significant heterogeneity 
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Is there evidence of heterogeneity in effect sizes? In this instance, the Q is 54.39, and we have 
sufficient evidence to reject the null hypothesis of homogeneity with a p-value that is less than 
0.05. Hence, we can conclude that there is significant heterogeneity in effect sizes across studies. 
In the case of significant heterogeneity like as in this example, the subsequent statistics become 
much more informative compared with homogeneity of effect sizes. 

What is the ratio of total to excess dispersion in effect sizes? In this instance, the Q of 54.39 is 
much greater than the model degrees of freedom (i.e. 19). Hence we have evidence of excess 
dispersion in effect sizes given the number of studies included in the meta-analysis that is much 
greater compared with the prior example. Examining Q-df is most helpful in understanding the 
magnitude of heterogeneity given the scope of the analysis. 

What is the between-study variance of the true effects? The τ2 remains in the metric of the 
effect size. In this example, the τ2 of 0.0703 indicates that variance in standardized mean 
difference (i.e. Hedges’ g) across studies is larger compared with our prior example. The value of 
τ2 also is concordant with findings of heterogeneity and excess dispersion from the statistics 
above compared with the prior example. 

Are there substantive implications of this heterogeneity? We can convert the τ2 to τ by taking 
the square root of τ2. Doing so allows for us to consider the standard deviation of dispersion in 
effects sizes across studies (as opposed to variance). In this example, the standard deviation of 
dispersion in effects sizes across studies (τ) in the metric of standardized mean difference is 
0.265. In combination, the pooled estimate in standardized mean difference of 0.472 and the 
standard deviation of dispersion in effects sizes across studies in standardized mean difference of 
0.265 may help making claims about the substantive implications of heterogeneity. In this 
example, however, we have evidence of heterogeneity in effect sizes across studies and have 
evidence that the heterogeneity is substantive given the pooled estimate derived from the model. 

What proportion of the observed heterogeneity is real vs. spurious? The variation in effect 
sizes across studies was significant (significant Q, excess dispersion (Q-df), and larger τ2 and τ), 
and from the I2 we learn that the proportion of the variation in standardized mean difference 
across studies attributable to heterogeneity in this example was 65.1%. An I2 of 65.1% would be 
considered moderate to large in most circumstances. Therefore, in this example, there was not 
significant heterogeneity in effect sizes across studies. In addition to being transparent in 
presentation by reporting these heterogeneity statistics, the potential sources and means of 
reducing heterogeneity should be considered. 

4.5 Exploring Heterogeneity 

Investigators are frequently interested in understanding which studies, and subsequently 
which study-level factors, may be associated with statistical heterogeneity that is estimated in 
meta-analyses. Minimally, heterogeneity should be explored descriptively and graphically as 
described below. In the special circumstances that specified, scientifically-defensible and 
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hypothesis-based study-level factors are identified, investigators may choose to complement 
preliminary descriptive and graphical approaches with subgroup or other meta-analytic 
approaches also described below. 

Descriptive and Graphical Approaches 

Although simple histograms, box plots and other related graphical methods of depicting 
effect estimates across studies may be helpful preliminarily, these approaches do not necessarily 
provide insight into statistical heterogeneity; but, there are several graphics designed specifically 
for the interpretation of meta-analytic results.125 

Forest plots 

Forest plots themselves can help identify potential sources and the extent of statistical 
heterogeneity. Meta-analyses with limited heterogeneity will produce forest plots with 
significant and grossly visual overlap among confidence intervals of the studies included. In 
contrast, a sign of statistical heterogeneity would be poor overlap among confidence intervals of 
the studies included in a meta-analysis.125 An example of a forest plot that shows considerable 
overall in the confidence intervals of each study (in risk ratio (RR)) is presented in the figure 
below (Figure 4.2) (Q = 29.76, p=0.097; I2 = 29.9%). 
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Figure 4.3. Forest plot without significant heterogeneity 
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An example of a forest plot that shows poor overall in the confidence intervals of each 
study in standardized mean difference (SMD) is presented in the figure below (Figure 4.4) (Q = 
54.39, p<0.0001; I2 = 65.1%). 
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Figure 4.4. Forest plot with significant heterogeneity 
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It is important to note that in each example the graphic depiction matches the 
heterogeneity statistics derived from the meta-analysis. We recommend performing graphic and 
quantitative exploration of heterogeneity in combination. 

Funnel plots 

It is often the case that funnel plots are thought of representing bias but they also can aid 
in detecting sources of heterogeneity as it may not be possible to distinguish between bias and 
heterogeneity using graphical means alone. Funnel plots are essentially the plotting of effect 
sizes observed in each study (x-axis) around the summary effect size vs. the degree of precision 
of each study (typically by standard error, variance or precision on the y-axis). A meta-analysis 
that includes studies that estimate the same underlying effect across a range of precision and has 
limited bias and heterogeneity would results in a funnel plot that resembles a symmetrical 
inverted funnel shape with increasing dispersion ranging with less precise (i.e. smaller) 
studies.125 Funnel plots should be considered for the preliminary analysis of statistical 
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heterogeneity. An example of a symmetric funnel plot around the summary estimate (in risk ratio 
(RR)) with increasing dispersion with decreasing precision is presented in the figure below 
(Figure 4.5) (Q = 29.76, p=0.097; I2 = 29.4%). 

Figure 4.5. Funnel plot without significant heterogeneity 
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In the event of heterogeneity and/or bias, funnel plots will take on an asymmetric pattern 
around the summary effect size and also provide evidence of scatter outside of the bounds of the 
95% confidence limits. An example of a funnel plot with evidence of asymmetry around the 
summary estimate (in standardized mean difference (SMD)) and studies falling outside of the 
confidence limits is presented in the figure below (Figure 4.6) (Q = 54.39, p<0.0001; I2 = 
65.1%). 

Figure 4.6. Funnel plot with significant heterogeneity 
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Normal probability plots 

Normal probability plots may be used in order to check the distributional assumptions 
made under random-effects models. Hardy and Thompson first proposed investigating the 
contribution that each study makes to the overall test statistic for heterogeneity (i.e. Q).126 A 
normal probability plot is generated presenting qi against Φ-1(Fk(q(i))), when under a random 
effects model: 

𝑞𝑞𝑖𝑖∗ = (𝜃𝜃𝑖𝑖 − 𝜃𝜃∗)/ (𝑣𝑣𝑖𝑖 + 𝜎𝜎B2), 

𝐹𝐹𝑘𝑘 𝑞𝑞(𝑖𝑖)  = (𝑖𝑖 − 3/8)/(𝑘𝑘 + 1/4) 

where Φ is the standard distribution function, 
𝜃𝜃∗ is the random-effects estimate 
𝑣𝑣𝑖𝑖 is the within-study variance, 
𝜎𝜎B2 is the between-study variance, and 
𝐹𝐹𝑘𝑘 𝑞𝑞(𝑖𝑖)  is approximated are depicted above. 

Using this approach, it is assumed that qi will have an approximate standard normal 
distribution under a normally distributed random-effects model. An example of a normal 
probability plot from the original paper126 is presented in the figure below (Figure 4.7). Normal 
probability plots can be adapted so that studies are labeled for visual identification of those that 
deviate from the normal distribution and are therefore exerting greater influence on overall 
heterogeneity. 

Figure 4.7. Normal probability plot 
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Baujat plot 

Baujat and colleagues proposed a graphical method to identify studies that have the greatest 
impact on heterogeneity.127 Baujat proposed plotting the contribution to the heterogeneity 
statistic for each study (𝑞𝑞𝑖𝑖𝐹𝐹) on the horizontal axis, and the squared difference between meta-
analytic estimates with and without the ith study divided by the estimated variance of the meta-
analytic estimate without the ith study along the vertical axis. Because of Baujat plot presentation, 
studies that have the greatest influence on heterogeneity will be located in the upper right corner 
for easy visual identification. An example of a normal probability plot from the original paper127 

is presented in the figure below (Figure 4.8). Note that studies in the example Baujat plot are 
labeled for easy identification. Also see the more recent paper by Bowden and colleagues128 for 
additional applied examples of Baujat plots in meta-analyses of randomized trials. 

Figure 4.8. Baujat plot 

Meta-Regression 

Meta-regression is a common approach employed to examine the degree to which study-
level factors explain statistical heterogeneity.129 Random-effects meta-regression, as compared 
with fixed-effect meta-regression, allows for residual heterogeneity or in other words among-
study variance that is not explained buy study-level factors incorporated into the model.130 

Because of this feature, among other benefits described below, random-effects meta-regression is 
preferred over fixed-effect meta-regression.131 Random-effects meta-regression takes on the 
following general form under the assumption that true effects follow a normal distribution 
around the linear prediction: 

𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑖𝑖𝛽𝛽 + 𝜇𝜇𝑖𝑖+∈𝑖𝑖 when 

𝜇𝜇𝑖𝑖~𝑁𝑁(0, 𝜏𝜏2) and 
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2)∈𝑖𝑖 ~𝑁𝑁(0, 𝜎𝜎𝑖𝑖

Where 𝑦𝑦𝑖𝑖 is the linear prediction for the effect size of study i,
𝑒𝑒𝑖𝑖 is a 1 x k vector of covariates values in study i,
𝛽𝛽 is a k + 1 vector of coefficients in study i,
𝜏𝜏2 is the estimate of among study variance, and 
𝜎𝜎𝑖𝑖 is the standard error in study i. 

It is the default of several statistical packages to use a modified estimator of variance in 
effect estimates generated by random-effects meta-regression that also employs a t distribution in 
lieu of a standard normal distribution when calculating p-values and confidence intervals (i.e. the 
Knapp-Hartung modification).132 This approach is recommended to help mitigate false-positive 
rates that are common in meta-regression.131 Since the earliest papers on random-effects meta-
regression there has been general caution about the inherent low statistical power in analyses 
when there are fewer than 10 studies for each study-level factor modelled.130 Currently, the 
Cochrane manual recommends that there be at least 10 studies per characteristic modelled in 
meta-regression15 over the enduring concern about inflated false-positive rates with too few 
studies.131 Another consideration that is reasonable to endorse is adjusting the level of statistical 
significance to account for making multiple comparisons in cases where more than one 
characteristic is being investigated in meta-regression. 

Beyond statistical considerations important in meta-regression, there are also several 
important conceptual considerations. First, study-level characteristics to be considered in meta-
regression should be pre-specified, scientifically defensible and based on hypotheses.8, 15 This 
first consideration will allow investigators to focus on factors that are believed to modify the 
effect of intervention as opposed to clinically meaningless study-level characteristics. Arguably, 
it may not be possible to identify all study-level characteristics that may modify intervention 
effects until all of the worlds’ evidence is collected and synthesized. Minimally, however, the 
focus of meta-regression should be on factors that are plausible and based on scientifically-
defensible hypotheses. Second, meta-regression should be carried out under full consideration of 
ecological bias (i.e. the inherent problems associated with aggregating individual-level data).133 

As classic examples, the mean study age or the proportion of study participants who were female 
may result in different inferences when included in meta-regression as opposed to the 
intervention effect modifying relationships that was observed in each trail.129 Hence, using study-
level characteristics as opposed to summary measures of individual-level data (e.g., average age, 
percent female) should be avoided. 

Example random-effects meta-regression 

The following is a simulated example of a random-effects meta-analysis followed by a 
random-effect meta-regression of the study-level characteristic of mean sample age. Based on 
the random-effects meta-analysis of 49 trials, the intervention effect was estimated as a risk ratio 
of 1.033 with a confidence interval that crossed to neutral value of 1.000 (i.e. 0.906-1.178); there 
also was significant and moderate heterogeneity based on the Q and I2 statistics presented in the 
figure below (Figure 4.9). 
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Figure 4.9. Meta-analysis output indicating significant heterogeneity 
---------------------+--------------------------------------------------
D+L pooled RR | 1.033 0.906 1.178 100.00 
---------------------+--------------------------------------------------

Heterogeneity chi-squared = 71.86 (d.f. = 48) p = 0.014 
I-squared (variation in RR attributable to heterogeneity) = 33.2% 
Estimate of between-study variance Tau-squared = 0.0516

Test of RR=1 : z= 0.49 p = 0.627 

Based on extensive preliminary comparisons of trial data indicating that the intervention 
under study was employed across as wide range of patient age as well as anecdotal published 
evidence of an age-related treatment effect (works well in younger but not older patients), it was 
hypothesized prior to the analysis that age would moderate the treatment effect in the event of 
significant statistical heterogeneity. Note that the consideration of including study age as a factor 
in subsequent meta-regression was pre-specified, scientifically defensible and based on a specific 
hypothesis. A random-effects meta-regression was performed using mean study age as the single 
study-level characteristic (the statistical output (generated using Stata’s metareg command) is 
presented in the figure below (Figure 4.10)). 

Figure 4.10. Meta-regression output 

Meta-regression Number of obs = 49 
REML estimate of between-study variance tau2 = .006654 
% residual variation due to heterogeneity I-squared_res = 0.00% 
Proportion of between-study variance explained Adj R-squared = 91.10% 
With Knapp-Hartung modification

_ES Coef. Std. Err. t P>|t| [95% Conf. Interval] 

StudyAge .0256257 .0038948 6.58 0.000 .0177904 .033461 
_cons -.2022906 .203356 -0.99 0.325 -.61139 .2068089 

Based on the meta-regression, we observe that there is a precise linear association 
between the study-level characteristic of mean age and the intervention effect indicating a higher 
risk associated with studies involving a higher mean patient age. Although there are several 
alternatives including method of movements and empirical Bayes, the default estimator of τ2 

using this command is REML that is based on maximization of the residual log likelihood. As 
discussed earlier, the Knapp-Hartung modification was applied. One additional key finding from 
this simulated meta-regression is that the residual I2 was reduced to 0.0% by including mean 
study age as the single study-level characteristic, and that nearly all of the observed 
heterogeneity was explained by this single factor (adjusted R2 of 91.10%). 

Like most other elements of meta-analysis and the extensions thereof, graph are helpful 
in interpreting the findings of the analyses. The figure below depicts the risk ratio (RR) of each 
study on the y-axis (with random-effect weights depicted as the volume of circles (bigger circles 
= more weight)), the mean study age on the x-axis, and the linear prediction line generated from 
the random-effects meta-regression. What can be particularly helpful with a graph of meta-
regression is insight into when benefit changes to risk. That is, given the neutral value of risk 
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ratio of 1.00 we have evidence of intervention benefit in trails of younger persons on average, 
and we have evidence of intervention risk in trials of older persons on average. 

Figure 4.11. Meta-regression graph 
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Subgroup Analysis 

Subgroup analysis is another common approach employed to examine the degree to 
which study-level factors explain statistical heterogeneity. Since subgroup analysis is a type of 
meta-regression that incorporates a categorical study-level factor as opposed to a continuous 
study-level factor, it is similarly important that the grouping of studies to be considered in 
subgroup analysis be pre-specified, scientifically defensible and based on hypotheses.8, 15 Like 
other forms of meta-regression, subgroup analyses have a high false-positive rate131 and may be 
misleading when few studies are included in the meta-analysis. There are two general approaches 
to handling subgroups in meta-analysis. First, it is an option to perform meta-analyses within 
subgroups without any statistical among-group comparisons. A central problem with this 
approach is the tendency to misinterpret results from within separate groups as being 
comparative. That is, identification of groups wherein there is a significant summary effect 
and/or limited heterogeneity and others wherein there is no significant summary effect and/or 
substantive heterogeneity does not necessarily indicate that the subgroup factor explains 
heterogeneity.15 Second, it is recommended to incorporate the subgrouping factor into a meta-
regression framework. Doing so allows for quantification of both within and among subgroup 
quantification of overall summary effects and heterogeneity as well as well as formal statistical 
testing that informs whether or not the summary estimates are different across subgroups. 
Moreover, subgroup analysis in a meta-regression framework will allow for formal testing of 
residual heterogeneity in a similar fashion compared with meta-regression using a continuous 
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Figure 4.12. Subgroup meta-regression output 
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0.45 (-0.21, 1.11)
0.37 (0.19, 0.55)
0.40 (0.24, 0.57)

SMD (95% CI)

26.14
6.88
7.93
7.23
51.82
100.00

13.81
9.93
17.95
22.82
14.93
9.67
10.89
100.00

23.37
24.77
51.85
100.00

3.44
5.38
7.00
5.98
78.20
100.00

Weight
%

0.54 (0.18, 0.90) 
0.09 (-0.61, 0.79) 
0.27 (-0.39, 0.93) 
0.56 (-0.13, 1.25) 
0.15 (-0.11, 0.40) 
0.29 (0.10, 0.47) 

0.99 (0.49, 1.50) 
-0.15 (-0.85, 0.54) 
0.04 (-0.32, 0.40) 
0.65 (0.46, 0.83) 
0.71 (0.25, 1.18) 
0.49 (-0.22, 1.20) 
0.38 (-0.26, 1.02) 
0.47 (0.19, 0.75) 

0.35 (-0.35, 1.05) 
0.51 (-0.15, 1.17) 
0.99 (0.80, 1.18) 
0.72 (0.28, 1.16) 

1.18 (0.31, 2.05) 
0.35 (-0.35, 1.05) 
0.42 (-0.19, 1.04) 
0.45 (-0.21, 1.11) 
0.37 (0.19, 0.55) 
0.40 (0.24, 0.57) 

SMD (95% CI) 

26.14 
6.88 
7.93 
7.23 
51.82 
100.00 

13.81 
9.93 
17.95 
22.82 
14.93 
9.67 
10.89 
100.00 

23.37 
24.77 
51.85 
100.00 

3.44 
5.38 
7.00 
5.98 
78.20 
100.00 

Weight 
% 

0-2.05 0 2.05 

  
 

 

 
 

    
  

 
     

 
 

   
  

  

 
 

study-level factor. The example below presents data within subgroups but then shifts focuses 
towards subgroup analysis using meta-regression. 

Example subgroup analysis 

The figure below is an example of a subgroup meta-analysis of 20 drug trials with a 
continuous outcome estimating using standardized mean difference. In this example, reductions 
in the continuous outcome were examined in four drug classes vs a comparator drug. If our only 
interest was how the comparator drug compared with each inherent subgroup of drug classes, we 
could perform a meta-analysis within each drug class (graph and output below (Figure 4.12) 
generated using Stata’s metan command with the by(subgroup) and nooverall options). 

Based on our interest into how the comparator drug compared with each inherent 
subgroup of drug classes, we can have evidence that there were some subgroups where there was 
significant heterogeneity (i.e. drug class 2 versus the comparator drug) while there was no 
significant heterogeneity in others. We also have evidence that the estimate in standardized mean 
difference was precise within each subgroup of drug classes. Based on this information we may 
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want to comment generally on the difference in magnitude of the effect sizes between groups. 
For example, we could comment that the effect observed in trials of drug class 3 vs the 
comparator was more than double the effect observed in trials of drug class 1 vs the comparator. 
We must resist the temptation to interpret other findings as being comparative, however, and also 
resist indicating whether or not examining subgroups reduced overall heterogeneity because that 
is not formally tested using this approach. 

The recommended alternative to within-subgroup analysis is incorporating the 
subgrouping factor into a meta-regression framework. The output below (generated using 
Comprehensive Meta Analysis v3) provides detailed information on both fixed effect and mixed 
effects subgroup meta-analysis in a meta-regression framework (Figure 4.13). 

Figure 4.13. Subgroup meta-regression output (meta-analytic framework) 

For each drug class, the number of studies included, and estimate, standard error, 
variance and confidence interval in the metric of standardized mean difference are presented. 
Note that these results are slightly different from those without the meta-regression framework 
(Figure 4.12). The z and p-values of summary estimates by drug class vs. the comparator drug 
are presented under the Test of null column. In this example, precise estimates were derived for 
each drug class comparison. Heterogeneity statistics for each drug class vs. the comparator drug 
are presented under the heterogeneity column. The overall model heterogeneity was significant 
(Q = 54.9, p<0.001; Q-df = 35.9 (excess); I2 = 65.4% (moderate-to-high)). When examining 
heterogeneity by drug class, however, we observe that there was homogeneity with certain drug 
classes (class 1 and 4 vs the comparator), and significant heterogeneity with others (i.e. drug 
class 2 vs. the comparator). Thus, with this case as an example we can use subgroup analysis as a 
means to explore the reasons for significant overall model heterogeneity. 

Additional metrics derived from subgroup meta-analyses are the total between chi-square 
tests (total Q in the output above) that inform whether or not the pooled summary estimates are 
different across subgroups. In this example, the chi-square test of between-group differences in 
summary estimates by fixed effect analysis was 26.773 and significant (p<0.001). The literal 
interpretation in this example would be that reductions in the continuous outcome are different 
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depending on which drug class is being tested against the comparator (i.e. the observed effect 
was not constant across drug classes). The chi-square test of between-group differences in 
summary estimates by mixed effects analysis, however, was 3.769 and not significant (p=0.287). 
The literal interpretation in this example would be that reductions in the continuous outcome are 
constant across drug classes tested against the comparator drug. The biggest difference between 
analyses is that the Q statistic generated from a fixed effect subgroup analysis is cumulative and 
it is not cumulative in the mixed effects subgroup analysis. Hence, the mixed effects subgroup 
analysis allows us to consider that the true effects vary within groups and that within-group 
random effects weights should be applied. 

Finally, we also can incorporate the categorical variable indicating subgroup into a meta-
regression to assess the influence on I2 and residual I2. The related output (generated from Stata’s 
metareg command) is presented in the figure below (Figure 4.14). 

Figure 4.14. Subgroup meta-regression output 
Meta-regression Number of obs = 20 
REML estimate of between-study variance tau2 = .04431 
% residual variation due to heterogeneity I-squared_res = 43.03% 
Proportion of between-study variance explained Adj R-squared = 26.10% 
Joint test for all covariates Model F(3,16) = 1.29 
With Knapp-Hartung modification Prob > F = 0.3132 

Although we have reduced I2 from 65.5% by incorporating the subgrouping variable into 
meta-regression, we still have moderate residual I2 of 43.0% and evidence of a poor fitting 
model. Hence, under a meta-regression framework we cannot consider that subgroup analysis 
reduced heterogeneity in the overall meta-analysis in this example. 

4.6 Detecting Outlying Studies 

Under full consideration that removal of one or more studies from a meta-analysis may 
interject bias in the results,15 clear identification of outlier studies may help build the evidence 
necessary to justify study removal. Visual examination of forest, funnel, normal probability and 
Baujat plots (described in detail earlier in this chapter) alone may be helpful in identifying 
studies with inherent outlying characteristics. Additional procedures that may be helpful in 
interpreting the influence of single studies are quantifying the summary effect without each study 
(often called one study removed), and performing cumulative meta-analyses. The table below 
(Table 4.1) presents results from the one study removed procedure (performed in 
Comprehensive Meta Analysis v3). 

Table 4.1 Summary Statistics with One Study Removed 
Study number RR LL95%CI UL95%CI p-Value 

1 0.437 0.425 0.450 0.000 
2 0.437 0.424 0.450 0.000 
3 0.439 0.427 0.452 0.000 
4 0.438 0.425 0.452 0.000 
5 0.433 0.421 0.446 0.000 
6 0.438 0.425 0.450 0.000 
7 0.438 0.425 0.451 0.000 
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8 0.433 0.420 0.445 0.000 
9 0.441 0.428 0.454 0.000 

10 0.434 0.419 0.448 0.000 
11 0.438 0.425 0.451 0.000 
12 0.432 0.419 0.445 0.000 
13 0.434 0.422 0.447 0.000 
14 0.434 0.422 0.447 0.000 
15 0.450 0.437 0.463 0.000 
16 0.431 0.418 0.443 0.000 
17 0.441 0.428 0.454 0.000 
18 0.411 0.399 0.424 0.000 
19 0.448 0.435 0.461 0.000 
20 0.441 0.428 0.454 0.000 
21 0.440 0.427 0.453 0.000 
22 0.435 0.422 0.448 0.000 
23 0.436 0.424 0.449 0.000 
24 0.432 0.419 0.444 0.000 
25 0.417 0.404 0.429 0.000 
26 0.434 0.420 0.447 0.000 

Summary Effect 0.435 0.423 0.448 0.000 

In this example, it may be that study 18 has characteristics that may exert an influence on 
the overall effect estimate as without its inclusion the summary effect would be lower (risk ratio 
of 0.411 vs the summary effect of 0.435. 

Using cumulative meta-analysis,134 it is possible to graph the accumulation of evidence of 
trials reporting at treatment effect. Simply put, this approach integrates all information up to and 
including each trial into summary estimates. By looking at the related graphical output ((Figure 
4.15) example below from Stata’s metacum command), we can examine large shifts in the 
summary effect that may lead use to examine study-level factors that should be considered when 
considering such studies potential outliers. In the example depicted below, we would want to 
examine trials number 3 and 17 as their addition to the meta-analysis results in a shift in the 
summary estimate. Irrespective of how potential outlying studies are detected (graphically using 
forest, funnel, normal probability or Baujat, or by one study removed of cumulative analysis), 
sensitivity analyses should be performed to quantify what changed comparing study inclusion 
and removal and to what degree. Specifically, the influence of study inclusion and removal on 
both the summary effect and heterogeneity should be quantified and presented for 
transparency.15 
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Figure 4.15. Cumulative meta-analysis 
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4.7 Special topics 

Baseline risk (control-rate) meta-regression 

For studies with binary outcomes, the “control rate” refers to the proportion of subjects in 
the control group who experienced the event. The control rate is viewed as a surrogate for 
covariate differences between studies because it is influenced by illness severity, concomitant 
treatment, duration of follow-up and/or other factors that differ across studies.29, 30 Patients with 
higher underlying risk for poor outcomes may experience different benefits and/or harms from 
treatment than patients with lower underlying risk.31 Hence, the control-rate can be used to test 
for interaction between underlying population risk at baseline and treatment benefit, particularly 
in the setting of significant heterogeneity or otherwise known differences in control rate across 
studies. To examine for an interaction between underlying population risk and treatment benefit, 
we recommend the following approach. First, generate a scatter plot of treatment effect against 
control rate as a useful preliminary approach to visually assess whether there may be a relation 
between the two. Since the RD is frequently highly correlated with the control rate,30 we 
recommend using a RR or OR when examining a treatment effect against the control rate in all 
steps. In a simulated example involving 49 trials (Q = 106.14, p < 0.001, I2 = 54.8%), the scatter 
plot of treatment effects in each study against the control-rate in each study reveals that higher 
risk ratios (particularly those above 2.0) only entailed studies wherein the control group event 
rate was less than 0.10 (Figure 4.16). This gives us preliminary insight into how differences in 
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baseline risk (control rate) may influence the amount of heterogeneity observed in the meta-
analysis. 

Figure 4.16. Effect size against control rate 
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Second, generate a simple weighted regression of the effect size on the control rate. 
Simple weighted regressions tend to identify a significant relation between control rate and 
treatment effect twice as often compared with more suitable approaches (below).30,32 A negative 
finding based on a simple weighted regression (i.e. slope not significantly different from zero) 
would be most likely replicated by the more complicated methods, and a positive finding (i.e. 
slope significantly different from zero) would need to be verified by a more comprehensive 
method. In the working example, we observe that using simple weighted regression there is a 
significant relationship between the control rate and intervention effect (specifically favoring a 
reduction in the intervention effect in samples with higher baseline risk) (Figure 4.17). 

Figure 4.17. Simple weighted linear regression output 

Source SS df MS 

Model 2.81809884 1 2.81809884 
Residual 28.7124501 47 .610903193 

Total 31.5305489 48 .656886435 

Number of obs = 49 

Prob > F 
F(1, 47) 

= 
= 

0.0369 
4.61 

Root MSE 
Adj R-squared 
R-squared 

= 
= 
= 

.7816 
0.0700 
0.0894 

_ES Coef. Std. Err. t P>|t| [95% Conf. Interval] 

controlrate -1.85875 .8654244 -2.15 0.037 -3.59976 -.117741 
_cons 1.525555 .1784839 8.55 0.000 1.166492 1.884619 

Third, if there is a positive finding based on a simple weighted regression, consider using 
hierarchical meta-regression models30 or Bayesian meta-regression32 models to validate and 
refine the presence of an interaction between underlying population risk and treatment benefit 
using formal control rate meta-regression. These approaches incorporate the covariate of control 
rate in explaining variance in the treatment effect under the hypothesis that the control rate is a 
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surrogate for differences in baseline risk among studies.33 With the working simulated example, 
we continue with a meta-regression using control rate as study-level factor to explain 
heterogeneity in the meta-analysis. Indeed, in this simulated example control-rate was confirmed 
as an influential factor using meta-regression (β= -2.16, SE=1.00, z= -2.16, p= 0.036) (graph 
below generated from Stata’s metareg command (Figure 4.18)). It is also clear that not all 
studies fit nicely on this meta-regression line; there is considerable residual I2 even after control-
rate is incorporated into the model. 

Figure 4.18. Effect size against control rate 
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Multivariate meta-regression 

It may be desirable to examine the influence of more than one study-level factor on the 
heterogeneity observed in meta-analyses. Recalling general cautions and specific 
recommendations about the inherent low statistical power in analyses wherein there is fewer than 
10 studies for each study-level factors modelled,15, 130, 131 multivariate meta-regression should 
only be considered when study-level characteristics to be considered are be pre-specified, 
scientifically defensible and based on hypotheses, and when the number of studies meets or 
exceeds 10 studies for each study-level factor included in meta-regression. 

As an example using simulated trial data, we may want to consider the influence of both 
the control-rate (as a proxy for differences in baseline risk among studies) and the mean age of 
the trial samples (based on published evidence of an age-related treatment effect). In this same 
simulated sample, we observed a difference in treatment effect by control-rate. Hence, we may 
want to disambiguate the influence of differences in baseline risk vs. differences in sample mean 
age on the heterogeneity we observed in the meta-analysis.  The figure below (Figure 4.19) 
presents output from a random effects meta-regression131 involving these two study-level 
characteristics (control rate and age) as generated using Comprehensive Meta Analysis v3). 
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Figure 4.19. Multivariate meta-regression 

Based on the output above, we have evidence of sample mean age modifying the 
treatment effect observed across studies such that older age is associated with greater risk. We 
also have evidence that after adjusting for differences in study age, the influence of control-rate 
on the treatment effect was no longer significant. Further, we have evidence of a model that 
results in greater fit to these data compared with an empty (intercept only model). In this case of 
meta-regression, we also have evidence of reduced heterogeneity (Q from 105.82 to 43.31 and 
no longer significant) and reduced inconsistency across trials (I2 from 54.64% to 0.00%). Hence, 
we have evidence of reduced heterogeneity and also a specific study-level factor associated with 
a gradient of risk across studies (mean study age adjust for control-rate vs. log risk ratio 
presented in the figure below) (Figure 4.20). 

Figure 4.20. Multivariate meta-regression graph (showing one significant relationship) 
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Multivariate meta-analysis 

There are both inherent benefits and disadvantaged of using meta-analysis as a tool to 
examine multiple outcomes simultaneously (i.e. multivariate meta-analysis).135-137 One of the 
advantages of multivariate meta-analysis is being able to incorporate multiple outcomes into one 
model as opposed to the conduct of multiple univariate meta-analyses wherein the outcomes are 
handled statistically as being independent.137 Another advantage of multivariate meta-analysis is 
being able to gain insight into relationships between study outcomes.137, 138 A final advantage of 
multivariate meta-analysis is that different clinical conclusions may be made compared with 
univariate meta-analysis.137 In that case, it can be considered easier to present results from a 
single multivariate meta-analysis compares with the results from different analyses that may 
make different assumptions. 

Some of the major potential issues involved with the joint modeling of multiple outcomes 
in meta-analysis (reviewed by Jackson and colleagues)137 include the disconnect between how 
outcomes are handled within each trial (typically in a univariate vs. multivariate fashion) vs a 
multivariate meta-analysis, estimation difficulties particularly around correlations between 
outcomes (seldom reported; see Bland139 for additional commentary), overcoming assumptions 
of normally- distributed random effects with joint outcomes (difficult to justify with joint 
distributions), marginal model improvement in the multivariate vs. univariate case (often not 
sufficient trade off in effort), and issue of amplification of publication bias (e.g. secondary 
outcomes are not published are frequently).137 Another issue is the appropriate quantification of 
heterogeneity in multivariate meta-analysis; but, there are newer alternatives that seem to make 
this less of a potential limitation including but not limited to the multivariate H2 statistic (the 
ratio of a generalization of Q and its degrees of freedom, with an accompanying generalization of 
I2 (𝐼𝐼𝐻𝐻2 )).140 Finally, limitations to existing software for broad implementation and access to 
multivariate meta-analysis was a long-standing barrier to this approach. With currently available 
add-on or base statistical packages, multivariate meta-analysis is able to be performed more 
readily,137 and emerging approaches to meta-analyses are available to be integrated into standard 
statistical output.141 

Overall, multivariate meta-analysis approaches may not be accessible to stakeholders 
involved with systematic reviews,139 and are dependent of sophisticated model selection and 
estimator selection procedures. Hence, our overall recommendation is the multivariate meta-
regression only be performed by statisticians with particular experience and expertise in this 
approach as well as a strong grasp in how to communicate the findings of meta-regression to 
broad audiences including the lay public. 

Dose-response meta-analysis 

Considering different exposure or treatment levels has been a longstanding consideration 
in meta-analyses involving binary outcomes,142, 143 and new methods have been developed to 
extend this approach to differences in means.144 Meta-regression is commonly employed to test 
the relationship between exposure or treatment level and the intervention effect (i.e. dose-
response). The best case scenario for testing dose responses using meta-regression are when 
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there are several trials that used each dosing of the intervention vs. control. That way, subgroup 
analysis can be performed to provide evidence of effect similarity within groups of study by dose 
in addition to a gradient of treatment effects across groups.15 Although incorporating study-level 
average dose can be considered is should only be conducted in circumstances where there was 
limited-to-no variation in dosing within intervention arms of the studies included. Otherwise, the 
common problem of ecological bias in meta-regression may lead to biased results.133 In the case 
of trials involving differences in means, dose-response models are estimated within each study in 
a first stage and an overall curve is obtained by pooling study-specific dose-response coefficients 
in a second stage.144 A key benefit to this emerging approach to differences in means is modeling 
non-linear dose-response curves in unspecified shapes (including the cubic spline described in 
the derivation study).144 Considering the inherent low statistical power associated with meta-
regression in general, results of dose-response meta-regression should generally not be used to 
indicate that a dose response does not exist.15 

4.8 Major Recommendations Regarding Heterogeneity 

•	 Statistical heterogeneity should be expected, quantified and sufficiently addressed in all 
meta-analyses. 

•	 Multiple metrics of heterogeneity and inconsistency should be generated to make 
substantive and cumulative interpretations (i.e. Q, Q-df, τ2, τ and I2 along with their 
respective confidence intervals when possible). 

•	 A non-significant Q should not be interpreted as the absence of heterogeneity. 
•	 In addition to forest and funnel plots, normal probability and Baujat plots may help 

identify studies contributing most to heterogeneity. 
•	 Random-effects meta-regressive techniques should be used only under full consideration 

of low power associated with limited studies (i.e. <10 studies per characteristic 
modelled), the potential for ecological bias, and should only be applied to specified, 
scientifically defensible hypotheses. 

•	 Exploring well-established subgroup using meta-regression (with across study effect 
quantification) is favored over analyses within subgroups. 

•	 Multivariate meta-regression should only be performed by statisticians with particular 
experience and expertise in this approach as well as a strong grasp in how to 
communicate the findings of meta-regression to broad audiences including the lay public. 
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Chapter V: Network Meta-Analysis (Mixed treatment 
comparisons/indirect comparisons) 

5.1 Rationale and Definition 

The comparative effectiveness agenda and focus on patient-important outcome have driven 
researchers to provide stakeholders with head to head comparative estimates. However; head to 
head trials are uncommon. The majority of trials compare active agents to placebo. Industry has 
minimal incentive to compare active agents; which has left patients and clinicians unable to 
compare the available treatment options with sufficient certainty. 

Therefore, a rationale has emerged to compare agents indirectly. If we know that intervention A 
is better than B by a certain amount, and we know how B compares to C; we can indirectly infer 
the magnitude of effect comparing A to C. Occasionally, a very limited number of head to head 
trials would be available (i.e., there may be a small number of trials directly comparing A to C). 
Such trials will likely produce imprecise estimates due to the small sample size and number of 
events. In this case, the indirect comparisons of A to C can be pooled with the direct 
comparisons, to produce what is commonly called a network meta-analysis estimate. The 
rationale for producing such an aggregate estimate is to increase precision, and to utilize all the 
available evidence for decision making. 

Frequently, more than two active interventions are available and stakeholders want to compare 
(rank) numerous interventions, creating a network of interventions with comparisons accounting 
for all the permutations of pairings within the network. 

5.2 Assumptions 

There are three key assumptions required for network meta-analysis to be valid: 

I. Homogeneity of direct evidence 

When important heterogeneity (unexplained differences in treatment effect) across trials 
is noted, confidence in a pooled estimate decreases.145 This is true for any meta-analysis. In a 
NMA, direct evidence (within each pairwise comparison) should be sufficiently homogeneous. 
This can be evaluated using the standard methods for evaluating heterogeneity (I2 statistic, 
Cochran Q test, and visual inspection of forest plots for consistency of point estimates from 
individual trials and overlap of confidence intervals). 

II. Transitivity, similarity or exchangeability 

Patients enrolled in trials of different comparisons in a network need to be sufficiently 
similar in terms of the distribution of effect modifiers. In other words, patients should be similar 
to the extent that it is plausible that they were equally likely to have received any of the 
treatments in the network. 
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Transitivity cannot be assessed quantitatively. However, this can be evaluated 
conceptually. Researchers need to identify important effect modifiers in the network and assess 
whether differences reported by studies are large enough to affect the validity of the transitivity 
assumption. 

III. Consistency or Coherence (between Direct and Indirect Evidence) 

Comparing direct and indirect estimates in closed loops in a network demonstrates 
whether the network is consistent (also called coherent). Important differences between direct 
and indirect evidence may invalidate combining them in a pooled NMA estimate. 

Consistency refers to the agreement between indirect and direct comparison for the same 
treatment comparison. If a pooled effect size for a direct comparison equals the pooled effect 
size from indirect comparison, we say the network is consistent; otherwise, the network is 
inconsistent or incoherent.146, 147 Multiple causes have been proposed for inconsistency, such 
as differences in patients, treatments, settings, timing, and other factors between direct 
comparison studies and to studies from which the indirect comparison was imputed; and 
differences in the risk of bias across the network. 

Statistical models have been developed to assume consistency in the network (consistency 
models) or account for inconsistency between direct and indirect comparison (inconsistency 
models). Consistency is a key assumption/prerequisite for a valid network meta-analysis and 
should be always evaluated. If there is a substantial inconsistency between direct and indirect 
evidence, we should not conduct network meta-analysis. Fortunately, inconsistency can be 
evaluated statistically. Figure 5.1 depicts the three assumptions required for a NMA: 

Figure 5.1. The three assumptions of network meta-analysis 
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5.3 Statistical Approaches 

Overview 

The simplest approach of an indirect comparison is to qualitatively compare the point estimates 
and the overlap of confidence intervals from two direct comparisons that use a common 
comparator. Two treatments are likely to have comparable effectiveness if their direct effects 
relative to a common comparator (e.g. placebo) have the same direction and magnitude, and if 
there is considerable overlap in their confidence intervals. Under this situation, the qualitative 
indirect comparison is useful by saving the resources of going through formal testing, and more 
informative than simply stating that there is no available direct evidence. Such qualitative 
comparisons have to be done cautiously because the degree of overlap of confidence intervals is 
not a reliable substitute for formal testing. 

In most cases, however, a more explicit and formal approach of indirect comparisons might be 
preferable. Formal testing methods are more reliable than qualitative assessments because they 
adjust the comparison of the interventions by the results of their direct comparison with a 
common control group at least partially using the strength of the original RCTs.148 This preserves 
the advantages of randomization of the component trials. 

Many statistical models for network meta-analysis have been developed and 
applied in the literature. These models ranges from simple indirect comparisons to more 
complex mixed effects and hierarchical models, developed in both Bayesian and Frequentist 
frameworks using both contrast level and arm level data. We also distinguish between Arm-
based vs contrast-based models. 

Simple Indirect Comparisons 

Simple indirect comparisons apply when there is no closed loop in the evidence network. 
At least three statistical methods are available to conduct simple indirect comparisons:  1) 
logistic regression, 2) random effects meta-regression, and 3) an adjusted indirect comparison 
method proposed by Bucher et al.149 When there are only two sets of trials, say, A vs. C and B 
vs. C, Bucher‘s method should be enough to get the indirect estimate of A vs. B. 

Under ideal circumstances (i.e. no differences in prognostic factors existed among 
included studies), all three methods result in unbiased estimates of direct effects.150 However, 
logistic regression uses arm level dichotomous outcomes data and is limited to odds ratios as the 
measure of effect. By contrast, meta-regression and adjusted indirect comparisons typically use 
contrast level data and can be extended to risk ratios, risk differences, mean difference and any 
other effect measures. Meta-regression (as implemented in Stata, metareg) and adjusted indirect 
comparisons are most convenient to compare trials with two treatment arms. A simulation study 
supports the use of random effects for either of these approaches.150 
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Mixed effects and hierarchical models 

More complex statistical models are required for more complex networks with closed loops 
where a treatment effect could be informed by both direct and indirect evidence. These models 
typically assume random treatment effects and take the complex data structure into account, and 
may be broadly categorized as mixed effects, or hierarchical models. 

Frequentist approach 

Lumley proposed the term “network meta-analysis” and the first network meta-analysis model in 
the frequentist framework, a random-effects inconsistency model by incorporating sampling 
variability, heterogeneity, and inconsistency.151 The inconsistency follows a common random-
effects distribution with mean of 0. It can use arm-level and contrast-level data and can be easily 
implemented in statistical software, including R’s lme package. However, studies included in the 
meta-analysis cannot have multiple arms. 

Further development of network meta-analysis models in the frequentist framework addressed 
how to handle multi-armed trials as well as was new methods of assessing inconsistency (e.g., 
Salanti et al., 2008; White et al. 2012, Higgins et al. 2012, Greco et al. 2015).152-155 Salanti et al. 
provided a general formulation of network meta-analysis model with either contrast-based data 
or arm-based data, and defined the inconsistency in a standard way as the difference between 
‘direct’ evidence and ‘indirect’ evidence.152 In contrast, White et al. (2012) and Higgins et al. (2012) 
proposed to use a treatment-by design interaction to evaluate inconsistency of evidence and developed 
consistency and inconsistency models based on contrast-based multivariate random-effects meta
regression.153, 154 These models could be implemented using network, a suite of commands in Stata with 
input data being either arm-level or contrast level. 

Bayesian approach 

Lu and Ades (2004, 2012) proposed the first Bayesian network meta-analysis model for multi-
arm studies that included both direct and indirect evidence.156 157 The treatment effects were 
represented by basic parameters and functional parameters, and the evidence inconsistency was 
defined as a function between a functional parameter and at least two basic parameters. The 
Bayesian model has been extended to incorporate study-level covariates in an attempt to explain 
between-study heterogeneity and reduce inconsistency,158 to allow for repeated measurements of 
a continuous endpoint that varies over time,82 or to appraise novelty effects.159 Additionally, Dias 
et al. (2013) set out a generalized linear model framework for the synthesis of data from 
randomized controlled trials, which could be applied to binary outcomes, continuous outcomes, 
rate models, competing risks, or ordered category outcomes.80 Very commonly, a vague (flat) 
prior is chosen for the treatment effect and heterogeneity parameters in Bayesian network meta-
analysis. An alternative would be to derive the prior from the predictive distributions for the 
degree of heterogeneity as expected in various settings depending on the outcomes assessed and 
comparisons made.160 

In the network meta-analysis framework, frequentist and Bayesian approaches often provide 
similar results because of the common practice to use non-informative priors in the Bayesian 
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analysis.156, 161, 162 Frequentist approaches, when implemented in a statistical package, are easily 
applied in real-life data analysis. Bayesian approaches are highly adaptable to complex evidence 
structures and provide a very flexible modeling framework, but would need a better 
understanding of the model specification and specialized programing skills.  

Arm-based vs contrast-based models 

It is important to differentiate arm-based/contrast-based models from arm-level/contrast
level data. Arm-level and contrast-level data describe how outcomes are reported in the original 
studies. Arm-level data list absolute effect size per study arm (e.g. number of withdrawals from a 
trial per group); while contrast-level data show the difference of outcomes between arms, aka, 
relative effect size or average treatment effect (e.g. odds ratio of withdrawals). 

Contrast-based models resemble the traditional approaches used in direct meta-analyses 
that relative effect sizes and associated variance are first estimated and then pooled to get 
estimates for treatment comparison.  Contrast-based models preserve randomization and, largely, 
alleviate risk of observed and unobserved imbalance between arms within a study. They use 
relative effect sizes and reduce variability of outcomes across studies. Contrast-based models are 
the dominate approach used in direct meta-analyses and network meta-analyses in current 
practice. 

Arm-based models, instead of pooling relative effect sizes in contrast-based models, 
directly combine observed absolute effect size in individual arms across studies. Although arm-
based models break randomization and suffer higher risk of bias, multiple models have been 
proposed, especially under Bayesian framework.163-167 Arm-based models allow 1) estimation of 
absolute measures (e.g. treatment-specific event rate) which may be important to patients and 
clinicians; 2) modelling outcome data in each arm directly (e.g. proportion of events using 
binominal distribution) and avoiding approximation of normality of relative effect size (e.g. log 
transformation of odds ratio); and 3) bypassing explicit modelling of correlations among multiple 
arms within a study. However, the validity of arm-based methods is under debate. Many experts 
argue arm-based models should be avoided.153,168, 169 

Assessing consistency 

Network meta-analysis generates results for all pairwise comparisons; however, consistency can 
only be evaluated when at least one closed loop exists in the network. In other words, the 
network must have at least one treatment comparison with direct evidence.  Many statistical 
methods are available to assess consistency.149, 157, 170-176 

These methods can generally be categorized into two types: an overall consistency measure for 
the whole network, and loop based approach in which direct and indirect estimates are compared. 
In the following section, we will focus a few widely used methods in the literature. 

i.	 Single Measure Network Coherency: Approaches using a single measure that 
represents coherence for the whole network. Lumley assumes that, for each treatment 
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comparison (with or without direct evidence), there is a different inconsistency factor; 
and the inconsistency factor varies for all treatment comparisons and follows a 
common random-effects distribution. The variance of the differences, ω , also called 
incoherence, measures the overall insistency of the network.170 ω above 0.25 
suggests substantial inconsistency and network meta-analysis is inappropriate.177 

ii.	 Global Wald Test: Another approach is to use global Wald test, where inconsistency 
factor follows a chi2 distribution under consistency assumption.153 p value <0.10 
should be used to show statistical significance, indicating that the model is 
inconsistent.  

iii.	 Loop based approach: This approach involves comparing direct and indirect estimates 
for each comparison. Although a single inconsistency measure is easy to calculate 
and interpret, it conceals important sources of inconsistency (if multiple loops exist) 
in the network. Comparing direct and indirect estimates can be done in various ways: 

a. Z-test: A simple z-test can be used to compare the difference of pooled effect 
sizes between direct and indirect comparison.149 This test can be easily applied in 
any statistical software or Microsoft Excel. Benefits include that it is a simple and 
easy to apply method and can identify specific loops with large inconsistency. 
Limitations include the need for multiple correlated tests. 

b. Node-splitting (side-splitting): A treatment comparison is also known as 
“node” or “side” in the network. Dias et al. suggested that each node can be 
assessed by comparing difference of the pooled estimate from direct evidence to 
the pooled estimate without direct evidence.171 Node-splitting can be implemented 
using Stata “network sidesplit” command or R “gemtc” package. 

c. Inconsistency plot: Several graphical tools have been developed. One is 
inconsistency plot developed by Chaimani et al.172 Similar to forest plot, 
inconsistency plot graphically presents inconsistency factor (absolute difference 
between direct and indirect estimates) and related confidence interval for all 
triangular and quadratic loops in the network. Stata “ifplot” command can be 
used. 

It is important to understand the limitations of these methods. A statistical insignificance does 
not prove consistency in the network. Similar to Cochran's Q test used for heterogeneity testing, 
statistical methods are under powered due to limited number of studies in direct comparisons. 
Random effect models, by incorporating heterogeneity, increase confidence intervals of the 
pooled effect size. This can hide important differences between direct and indirect evidence and 
further reduce the possibility of detecting inconsistency.  
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5.4 Considerations of model choice and recommendations 

Consideration of Indirect Evidence 
Empirical explorations suggest that direct and indirect comparisons often agree,151, 178-182 but with 
notable exceptions.183 In principle, the validity of combing the direct and indirect evidence relies 
on the transitivity assumption, that is, the invariance of treatment effects across study 
populations. However, in practice, trials can vary in numerous ways including population 
characteristics, interventions and cointerventions, length of followup, loss to followup, study 
quality, etc. Given the limited information in many publications and the inclusion of multiple 
treatments, the validity of combing the direct and indirect evidence is often unverifiable. The 
statistical methods to evaluate inconsistency are generally have low power, and confounded by 
the presence of statistical heterogeneity. They often failed to detect inconsistency in the evidence 
network. 

Moreover, network meta-analysis by combing the direct and indirect evidence, like all other 
meta-analyses, essentially constitutes an observational study, and residual confounding can 
always be present. Systematic differences in characteristics among trials in a network can bias 
network meta-analysis results. In addition, all other considerations for meta-analyses, such as 
choice of effect measures or heterogeneity, also apply to network meta-analysis. Therefore, in 
general, investigators should compare competing interventions based on direct evidence from 
head-to-head RCTs whenever possible. When head-to-head RCT data are sparse or unavailable 
but indirect evidence is sufficient, investigators could consider incorporate indirect evidence and 
network meta-analysis as an additional analytical tool. If the investigators choose to ignore 
indirect evidence, they should explain why. 

Choice of models 

Although the development of network meta-analysis models exploded in the last ten years, there 
has been no systematic evaluation of their comparative performance, and the validity of the 
model assumptions in practice is generally hard to verify. 

Investigators may choose a frequentist or Bayesian model based on the research team expertise, 
the complexity of the evidence network and research question. However, whichever method the 
investigators choose, they should assess the consistency of direct and indirect evidence, and 
invariance of treatment effects across studies and appropriateness of the chosen method on a 
case-by-case basis, paying special attention to comparability across different sets of trials. 
Investigators should explicitly state assumptions underlying indirect comparisons and conduct 
sensitivity analysis to check those assumptions. If the results are not robust, findings from 
indirect comparisons should be considered inconclusive. Interpretation of findings should 
explicitly address these limitations. Investigators should also note that simple adjusted indirect 
comparisons are generally underpowered, needing four times as many equally sized studies to 
achieve the same power as direct comparisons, and frequently lead to indeterminate results with 
wide confidence intervals.179, 181 

When the evidence of a network of interventions is consistent, investigators could combine direct 
and indirect evidence using network meta-analysis models. Conversely, they should refrain from 
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combining multiple sources of evidence from an incoherent network where there are substantial 
differences between direct and indirect evidence. Investigators should make efforts to explain the 
differences between direct and indirect evidence based upon study characteristics, though little 
guidance and consensus exists on how to interpret the results. 
Lastly, the network geometry can also affect the choice of analysis method a demonstrated in 
Figure 5.2. 

Figure 5.2. Impact of network geometry on analysis method. 

5.5 Inference from network meta-analysis 

Stakeholders (users of evidence) require a rating of the strength of evidence assigned to 
estimates of comparative effectiveness. The strength of evidence demonstrates how much 
certainty we should have in the estimates. 

The general framework for assessing the strength of evidence used by the EPC program 
is described elsewhere. However; for network meta-analysis, guidance is evolving and may 
require some additional computations; therefore, we briefly discuss the possible approaches. We 
also discuss inference from rankings and probabilities commonly presented with a network meta-
analysis. 
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Approaches for Rating the Strength of Evidence: 

The original GRADE guidance was simple and involved rating down all evidence derived 
from indirect comparisons (or NMA with mostly indirect evidence) for indirectness. Therefore, 
following this original GRADE guidance, evidence derived from most NMAs would be rated to 
have moderate strength at best.184 

Salanti et al. evaluated the transitivity assumption and network inconsistency under the 
indirectness and inconsistency domains of GRADE; respectively. They judged the risk of bias 
based on a ‘contribution matrix’ which gives the percentage contribution of each direct estimate 
to each network meta-analysis estimate.185 A final global judgment of the strength of evidence is 
made for the overall rankings in a network. 

More recently, GRADE published a new approach that is based on evaluating the 
strength of evidence for each comparison separately rather than making a judgment on the whole 
network.186 The rationale for not making such an overarching judgment is that the strength of 
evidence (certainty in the estimates) is expected to be different for different comparisons.  The 
approach requires presenting the three estimates for each comparison (direct, indirect and 
network estimates), then rating the strength of evidence separately for each one. 
In summary, researchers conducting NMA should present their best judgment on the strength of 
evidence to facilitate decision-making. Innovations and newer methodology are constantly 
evolving in this area. 

Interpreting Ranking Probabilities and Clinical Importance of Results 

Network meta-analysis results are commonly presented as probabilities of being most 
effective and as rankings. Such presentations should be interpreted with caution since they can 
be quite misleading. 

Whether results were presented as probabilities, rankings or surface under the cumulative 
ranking curve (SUCRA), three pitfalls should be recognized: 

I.	 Such estimates are usually very imprecise. An empirical evaluation of 58 NMAs 
showed that the median width of the 95% CIs of the SUCRA was 65% (first to third 
quartile, 38% to 80%). In 28% of networks, there was a 50% or greater probability 
that the best-ranked treatment was actually not the best. No evidence showed a 
difference between the best-ranked intervention and the second and third best-ranked 
interventions in 90% and 71% of comparisons, respectively. 

II.	 When rankings suggest superiority of an agent over others, the absolute difference 
between this intervention and other active agents could be trivial. Converting the 
relative effect to an absolute effect is often needed to present results that are 
meaningful to clinical practice and relevant to decision making.187 Such results can 
be presented for patient groups with varying baseline risks. The source of baseline 
risk can be obtained from observational studies judged to be most representative of 
the population of interest, from the average baseline risk of the control arms of the 
randomized trials included in meta-analysis, or from a risk stratification tool if one is 
known and commonly used in practice.188 
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III.	 Rankings hide the fact that each comparison may have its own risk of bias, 
limitations and strength of evidence. 

5.6 Presentation and Reporting 

Methodological evaluation of published network meta-analyses demonstrated great 
heterogeneity in reporting and numerous deficiencies. Commonly, network meta-analyses 
demonstrated unclear understanding of underlying assumptions, inappropriate search and 
selection of relevant trials, use of inappropriate or flawed methods, lack of objective and 
validated methods to assess or improve trial similarity, and inadequate comparison or 
inappropriate combination of direct and indirect evidence.189-191 

Such deficiencies necessitated the extension of the PRISMA (Preferred Reporting Items 
for Systematic Reviews and Meta-analyses) statement that attempted to improve the reporting of 
systematic reviews incorporating network meta-analyses.192 The extension suggests reporting 
several items that are categorized as belonging to the title, abstract, introduction, methods, 
results, conclusions and funding sections of a manuscript. However, these items can also be 
viewed as those addressing the systematic review process itself to make it explicit and 
reproducible (search details, study selection methods, etc.); or items that relate to analysis 
(describe the model used, effect measure selected, sensitivity analysis, etc.); or items that relate 
to inference (strength of evidence, limitations and conclusions). All these recommendations of 
reporting are essential and should be considered minimal criteria. Many of these elements were 
unfortunately often neglected in published network meta-analyses. Nevertheless, additional 
information is clearly needed to assist stakeholders and decision makers appraise the evidence 
and judge its strengths, determine the applicability of evidence, and act on it. 

Summary 

In summation, we suggest that network meta-analyses present the following information: 

I.	 Description of the process of the systematic review: Similar to any other systematic 
review, the report should include the rationale for the review, research question, 
eligibility criteria (patient, interventions, comparisons, outcomes, included studies design 
and duration), search strategies, and details of study selection process. EPC guidance is 
available to help authors appropriately report such elements (cite). 

II.	 Description of analysis plan: the report should include the general approach used (e.g., 
Bayesian, Frequentist), the model (random vs fixed; consistency vs inconsistency), 
rationale for model choice, preplanned and post hoc subgroup and sensitivity analyses, 
software and syntax/command used, choice of priors for Bayesian analyses and 
description of how rankings were generated. A graphical presentation of network 
structure and geometry is also strongly encouraged to show the amount of direct evidence 
and help evidence users understand the nature of available evidence. 
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III. Description of the results: 
a.	 Data from individual studies: Description of the characteristics of each study is 

needed to facilitate application of the results and judging indirectness of evidence. 
Description of risk of bias of each study and overall across studies is needed to 
facilitate judging the strength of evidence. Description of the effect size of each study 
is needed to permit evaluation of heterogeneity and to allow reproducibility of 
analysis. 

b.	 Pooled results: a relative association measure or other type of effect size (WMD, 
SMD, etc.) should be displayed for each pairwise comparison to allow comparative 
effectiveness inferences. Usually a tabular format (example) with interventions listed 
as columns and rows facilitate such presentation although other graphical 
presentations are also possible and innovations in presenting these complicated results 
are in progress. Rankings can be presented as probabilities or as area under the curve. 

c.	 Robustness of results: It is highly important to be explicit in describing how the 
choice of model or the choice of prior distributions affects conclusions.  Assumptions 
made during the process should also be verified to determine how it impacts 
conclusions (e.g., including borderline eligible studies, using different correlation 
coefficients to impute measures of variability, etc.). A key methodological issue in 
network meta-analysis is to demonstrate the extent of consistency between direct and 
indirect comparisons to allow judgment of network coherence (consistency). 

IV. Inferences: 
a.	 Reporting of the strength of evidence: a mandatory step without which stakeholders 

cannot consume and apply evidence. Evidence profiles (i.e., tables that show the 
effect size in relative and absolute terms and the judgments made regarding the 
strength of evidence) can be constructed for key comparisons (as identified by 
stakeholders) or for all comparisons (if relevant). 

b.	 Clinical importance/magnitude of effect: network meta-analysis should not solely 
depend on ranking probabilities but rather present effect sizes for all comparisons. 
Presenting an absolute effect will be most helpful for decision-making and clinical 
practice. 
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Chapter VI: Stability and Sensitivity Analyses in 
Evidence Synthesis 

Abstract 

We present an overview of analyses undertaken to evaluate the robustness (or fragility) of 
systematic review and meta-analysis findings to changes in assumptions or methodological 
decision about the data and methods used for evidence synthesis. We discuss stability analyses, 
which evaluate the robustness of conclusions to different methodological choices. Stability 
analyses pertain to the selection of data to be synthesized (e.g., leave-one-out analyses); the 
specification of models for evidence synthesis (e.g., the use of a discrete within-study likelihood 
or a normal approximation); and the estimators and techniques for estimating model parameters 
(e.g., the use different estimators for quantifying between-study heterogeneity under the same 
statistical model). We also discuss sensitivity analyses, which evaluate the impact of different 
assumptions about the parameters of a particular statistical model on conclusions. In the context 
of systematic reviews, sensitivity analyses are used for handling missing study-level data, the 
selective dissemination of study results, or the estimation of unidentifiable or weakly identifiable 
model parameters. We identify challenges in the interpretation of stability and sensitivity 
analyses in evidence synthesis and offer recommendations for their use in applied work. 

6.1 Background 
Synthesizing evidence to answer well-specified research questions requires investigators to make 
innumerable choices among different sources of evidence, approaches for extracting data, and 
methods for synthesis (including any statistical modeling). In any particular project, the best 
choices are not always obvious and investigators often use multiple alternative approaches to 
probe the same body of evidence (e.g., repeating analyses after excluding a subset of studies, 
using different estimators to estimate the parameters of the same model, etc.). In addition, 
synthesis of information from multiple sources often requires the handling of missing data and 
the specification of models with parameters that cannot be identified from the available data; this 
is particularly true of evidence synthesis efforts that attempt to account for missing data (e.g., 
lack of data needed to estimate sampling variances), selective dissemination of study results 
(e.g., selective reporting or publication bias), or address biases in individual studies (e.g., 
confounding or selection bias). 

Systematic reviewers often undertake a number of activities which aim to assess whether 
their conclusions are robust (i.e., not fragile) to different methodological decisions or 
assumptions about missing data and biases. Attempts to define robustness, to develop robust 
methods, and to understand the epistemological status of robustness have a long history in 
statistics, econometrics, mathematical modeling, and philosophy of science.193, 194 Importantly, 
robustness is determined as a joint property of the research question and target of inference, data, 
assumptions, and models used in evidence synthesis. 

70
 



    
   

 
   

  
   

   
    

 
   

   

 

     
 

 
  

  
   

  
  
  

  
  

   
 

    
 

 

 
 

  
      

  
  

 
 

 
    

  
 

 
 

In this paper, we provide an overview of analyses that are useful for assessing robustness 
in applied evidence synthesis projects. Though we find that such analyses are often useful, we 
discuss challenges that arise in their interpretation and identify some caveats in popular 
approaches. We adopt a pragmatic perspective and provide recommendations for practitioners 
without delving into epistemological issues (see for e.g., Wimsatt, (1981) Woodward, (2006) and 
Orzack).194, 195 Many of our examples use as the target of inference the construction of a response 
surface for the mean effect size conditional on a rich set of covariates describing the 
interventions, study designs, and included populations using a large collection of relevant 
studies.196 We often assume that the investigators wish to estimate this target by combining the 
data and likelihood with the investigators prior beliefs in a Bayesian analysis; we view this as an 
important approach to evidence synthesis (and the most tenable form of meta-analysis when data 
are obtained through published reports of completed studies). Nevertheless, our points are 
general and apply to alternative approaches for synthesis, ranging from non-quantitative 
approaches to generalized evidence synthesis. 

6.2. Assessing the Robustness of Evidence Synthesis 

We find it useful to organize the various activities that aim to assess the robustness of evidence 
synthesis results into stability and sensitivity analyses. 

Stability analyses evaluate the robustness of conclusions to distinct methodological 
choices. These analyses pertain to the selection of data to be synthesized (e.g., repeating the 
analyses after excluding studies with outlying effect estimates); the specification of models for 
evidence synthesis (e.g., the decision to include certain covariates in a meta-regression model); 
the choice of estimators for estimating model parameters (e.g., the use of alternative estimators 
for the heterogeneity parameter in a particular statistical model); or aspects of estimation and 
computing techniques (e.g., the choice of starting values for iterative procedures or the practical 
aspects of using MCMC techniques to fit Bayesian models). 

Sensitivity analyses evaluate the implications of assumptions about unidentifiable model 
parameters on results, conditional on some class of statistical models. In the context of evidence 
synthesis, sensitivity analyses can be used for handling missing study-level data (e.g., in before-
after studies or studies of net-change the correlation between the pre-treatment and post-
treatment means are almost never reported and need to be imputed), selective dissemination of 
study results (e.g., selective reporting or publication bias), or the estimation of model parameters 
when studies are deemed susceptible to biases (e.g., due to confounding or selection bias). 

In Table 6.1 we list examples for sensitivity and stability analyses at various steps of the 
systematic review process. In the following section we discuss some of these examples in more 
detail to give a more complete account of stability and sensitivity analysis in evidence synthesis. 
In Sections 3 and 4 we discuss the conduct of stability and sensitivity analyses in more detail and 
in Section 5 we address issues of interpretation. 

Recommendations for stability and sensitivity analyses in systematic reviews:
 
We propose the following recommendations for stability and sensitivity analyses in systematic reviews:
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1.	 When planning the review, identify stability analyses to be performed by considering the 
major methodologic decisions for which reasonable analysts might disagree on the preferred 
approach. 

2.	 When planning the review, consider the use of sensitivity analyses for addressing the impact 
of missing data, publication bias, and the risk of bias of individual studies on study results. 
Select sensitivity analyses to be performed by considering the research question and target of 
inference, the available data, and background knowledge about the substantive area and the 
relevant methods. 

3.	 Describe all planned stability and sensitivity analyses, their rationale, and the approach for 
interpreting their results in the study protocol. For sensitivity analyses that are driven by 
unidentifiable assumptions justify assumptions based on background knowledge. 

4.	 Describe any additional stability and sensitivity analyses undertaken during the review 
process that were not pre-planned. Explain why these analyses were undertaken and 
acknowledge the extent to which they were driven by the examination of the data and expert 
input.  

5.	 Report the methods and findings of stability and sensitivity analyses in full to allow users of 
the systematic review to form their own conclusions regarding the interpretation of results. 

6.	 Use substantive and methodological knowledge to interpret the findings of stability and 
sensitivity analyses, including both cases were results were robust and cases where results 
depended on the choice of methods or assumptions. 

6.3 Conducting Stability Analyses 

“A complex analysis involves numerous implementation or analytical decisions. The 
audience for such an analysis typically wishes to be assured that conclusions are not artifacts of 
such decisions, but rather are stable over analyses that differ in apparently innocuous ways.”197 It 
is useful to consider stability analyses as they pertain to different stages of the systematic review 
process: the search and selection of studies; the extraction of data from eligible studies; choice of 
models for evidence synthesis; modes of statistical inference; estimation approaches for the 
parameters given a model and mode of inference. 

Search and selection of studies: Stability analyses aim to identify whether the provenance 
of the studies or other characteristics that ostensibly should not influence study results have any 
impact on results. For example, reviewers are often interested in seeing whether indexing of 
studies in particular databases (e.g., PubMed vs. non-PubMed),198 the language of the report 
from which data are extracted (e.g., English vs. non-English language), study sample size (e.g., 
studies above vs. below the median sample size) correlates with the estimated effect size. 
Additional examples include dropping one study at a time to check whether a study is 
particularly influential, excluding studies with extreme (“aberrant”) effects,199 or all subsets 
meta-analyses [cite Olkin RSM]. Plots are usefully for summarizing such analyses.125 For 
example, the exclusion sensitivity plot or similar graphs,200, 201 can reveal studies that have a 
particularly large influence on the result of a meta-analysis. Graphs are also useful for studying 
the distribution of all subsets meta-analysis results. 
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Extraction of data from eligible studies: It is not uncommon that a single study will report 
multiple estimates for the same parameter; when multiple estimates for the same parameter are 
available reviewers might wish to examine whether the choice of a particular type of estimate 
has an impact on results. For example, crude (unadjusted) mean difference estimates for the 
effect of a binary treatment may be reported along with multivariably adjusted results (including 
adjustments with different sets of covariates). For example, reviewers might examine a meta-
analysis using unadjusted study-level results, as well as maximally adjusted results, or results 
adjusted for a minimum (predetermined) set of covariates. Of note, such stability analyses are 
fairly straightforward for meta-analyses of collapsible effect measures (e.g., mean differences) 
from randomized trials, but are more complicated for meta-analyses of observational studies 
(because different adjustment sets imply different assumptions about confounding) and non-
collapsible effect measures (e.g., odds ratios or hazard ratios). 

Choice of statistical models for evidence synthesis: Often, more than one statistical 
model can be used to obtain the same estimand. For example, when analyzing discrete outcomes, 
it is possible to use a discrete (e.g., binomial for binary data) or normal (approximate) within-
study likelihood. Performing the analyses both ways might be a useful way to assess whether the 
normal approximation is adequate (admittedly, an assessment of limited and primarily 
methodological interest). Of course, in many such cases the preferred model might be chosen on 
the grounds of theory or simulation studies (e.g., several simulation studies provide strong 
evidence in favor of using the discrete within-study likelihood when the maximization algorithm 
converges). As another example of stability analysis for the choice of statistical model, when 
adopting a Bayesian mode of inference, different priors can be used to represent different beliefs 
about parameters (in Bayesian analyses the likelihood and prior constitute the model). These 
stability analyses might produce different results to the extent that the posterior distribution is 
influenced by the prior. In this case, the beliefs of the user(s) of the review determine which 
analyses should be considered as better addressing the research question. 

Choice of mode of inference: As noted in the Background section, we find Bayesian 
methods to be a natural choice for evidence synthesis, particularly when studies are identified 
retrospectively, data are obtained from secondary sources (journal articles, gray literature, etc.), 
and reviewers cannot influence the design of the studies being synthesized. With the increasing 
availability of software to perform Bayesian analyses, meta-analyses conducted using both 
Bayesian and non-Bayesian methods have become common. This sort of stability analysis 
provides an indirect assessment of the relative amount of information in the prior and data 
(likelihood). The interpretation of numerical comparisons between Bayesian and non-Bayesian 
estimates is not straightforward (because parameters are treated differently in the two modes of 
inference). In addition, an assessment of the relative amount of information in the prior and data 
can be obtained entirely within the Bayesian analysis (e.g., by prior-posterior comparisons). 

Estimation approaches: Given a particular model and mode of inference, it is often the 
case that multiple estimation approaches are available for the same estimand. Agreement in the 
estimates obtained with different approaches can provide some reassurance that the data is 
adequate for drawing conclusions, without the estimators having undue influence. For example, 
if one adopts a normal-normal random effects model and a frequentist mode of inference, there 
exist multiple estimators of the between-study variance. Many reasonable candidate estimators 
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are (asymptotically) equivalent, yet empirical analyses and simulation studies (reviewed in 
Chapter III) demonstrate that modest discrepancies are not uncommon with the (finite) sample 
sizes seen in applied reviews (by sample size we mean both the number of studies and the 
number of participants in each study). It is often considered good practice to repeat the analysis 
using different estimators; in view of well-known theoretical results, lack of stability across 
analyses conveys information about the (inadequacy) of the data. 

6.4 Conducting Sensitivity Analysis 

Within a given analytic model, a sensitivity analysis typically examines a continuous 
family of departures from a critical assumption(s), i.e. changes in parameters, where attention 
focuses on the relationship between the magnitude of the departure and the magnitude of the 
change in conclusions.197 Sensitivity analysis can be conceptualized as an examination of the 
dependence of results on unidentifiable model parameters. As will be seen below, using 
appropriately parameterized models, general qualitative statements that might apply to all meta-
analyses can be replaced by quantitative statements that are specific to a particular analysis. 

In contrast to opportunities for stability analyses (which arise throughout the systematic 
review process), sensitivity analyses are conditional on particular (classes of) models. We might 
claim that in all applied evidence synthesis projects, many model parameters are non-
identifiable: <DEFINE> unless the investigators are willing to make extremely strong 
assumptions. For example, most meta-analyses are affected by publication bias and selective 
reporting. Unless strong assumptions are made about the number of missing studies and the 
relationship of their results to those of the included studies, the mean effect or the regression of 
the mean effect on covariates cannot be identified. Thus, even though rarely pursued formally, 
sensitivity analyses could allow a more realistic interpretation of the results of all applied 
systematic reviews. We now consider some examples of where the need for sensitivity analysis 
can arise in meta-analyses using published data. Of note, there are multiple approaches for 
conducting sensitivity analysis for a given problem, and each approach requires systematic 
reviewers to make many choices, each of which can be subjected to stability analysis. 

Missing data required for quantitative synthesis: Missing data are ubiquitous in 
systematic reviews and different values for the missing quantities can change meta-analysis 
conclusions. For example, in meta-analyses of net changes (comparative studies with before-
after mean measurements in each of the groups being compared) the within-group means are 
correlated but an estimate of the correlation is almost never reported and different values for that 
quantity would result in a different standard error for the net change. A common approach in this 
case is to perform a sensitivity analysis by “plugging in” different values for the missing 
correlation estimate to assess impact on results (more formal treatments are possible, e.g., by 
specifying the likelihood of the complete data, possibly with an informative, background
knowledge-based, prior for the within-arm correlation). Similar issues arise in the analysis of 
data from cluster randomized trials where the intra-class correlation coefficient is almost never 
reported. 

Handling publication bias and other dissemination biases: Publication bias – the 
preferential publication of statistically significant or otherwise remarkable results (e.g., 

74
 



     
 

 
   

  
 

   
 

 
 

  
  

 
  

 
 

   
   

 
 
 

  
 

   
  

  
 

  
  

  
  

 
 

  
  

 
 
 

  
 

   

 
 

contradictory) – and other dissemination biases (e.g., selective outcome and analysis reporting) 
are special types of missing data problems that are believed to be common and cannot be 
addressed (or even detected) simply by considering the information uncovered by systematic 
reviewers. For example, it is impossible to know the number of conducted and otherwise eligible 
but unpublished studies simply by examining the studies actually uncovered.  Inference in the 
presence of publication bias is inherently risky because all methods for handling publication bias, 
ranging from qualitative summaries to full scale modeling of the publication selection process, 
rely on unverifiable assumptions. Examples of formal sensitivity analyses for suspected 
publication and other dissemination biases include the many selection model-based methods 
(e.g., the likelihood based approach of Copas.202 More commonly used approaches, such as trim-
and-fill and failsafe-N, can also be viewed as sensitivity analysis methods for publication bias, 
albeit ones where the underlying missing data mechanism is less explicitly represented. 

Adjusting for possible bias due to deficiencies in study design, planning, or conduct: 
Most studies, both randomized and non-randomized, have identifiable deficiencies in their 
design and conduct (e.g., poor allocation concealment in trials; baseline confounding in 
observational studies; dropout and loss-to followup in all studies, etc.). The different sources of 
bias can be represented in the statistical model used for evidence synthesis as “bias parameters,” 
but it is well-understood that these parameters are not identifiable. It follows that sensitivity 
analysis is the only viable approach for assessing the impact of the bias factors on the results of 
the evidence synthesis. 

6.5 Interpreting Stability and Sensitivity Analyses 

Because different types of stability and sensitivity analyses have different goals and 
require different approaches, it is hard to provide strict rules for their interpretation. The 
examples we have provided in previous sections should cover many of the most common 
situations in applied systematic reviews. In this section we try to identify some important general 
themes; in the next section we provide some actionable recommendations for applied systematic 
reviews. 

Robustness is a joint property of the target of inference, the data, and methods: As in 
statistical analyses of primary data, the robustness of evidence synthesis depends on the target of 
inference, the data, and the statistical methods (model and estimation). For example, the 
robustness of results might vary depending on whether the target of inference is the average 
effect size, the average effect for studies with a set of particular characteristics, or that the 
probability that either effect is more extreme than some pre-specified value. Furthermore, when 
estimating the average effect using and iterative method-of-moments estimation approach, the 
robustness of the analysis will depend on the number of available studies. Finally, the choice of 
statistical methods can impact robustness by weakening reliance on particular assumptions. For 
example, method-of-moments estimators for the normal-normal meta-analysis model are robust 
to distribution of the random effects as they do not require its specification for consistency. In 
contrast maximum likelihood estimators might be more sensitive to this assumption. 
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Robustness and its absence are both interesting: Contrary common belief, both robustness 
and its lack are informative in systematic reviews. For example, if results appear unstable in 
leave-one-out analyses can be useful for identifying studies with unique (substantive or 
methodological) characteristics. Similarly, if results are sensitive to assumptions about missing 
data or publication bias reviewers’ can avoid drawing inappropriately strong conclusions from a 
body of evidence. Of note, in some cases we are interested in demonstrating that stability 
analyses have no appreciable impact on results. For example, when choosing different starting 
values for an iterative algorithm that is known to converge to some limiting value we typically 
wish to illustrate that diverse starting values lead to the same conclusions. Discovering that 
different values lead to different results indicates problems (in programming, model 
specification, etc.) that need to be examined further. In other cases, it is generally expected that 
different choices will almost always have some impact on the results. For example, the inclusion 
of different variables in meta-regression models or the use of different prior distributions are 
generally expected to have some impact on results. Such stability analyses are informative 
because the patterns of stability or instability of results can aid the examination of the body of 
evidence. 

The problem of forking paths: Even in simple evidence synthesis projects investigators 
need to make many methodological choices. The number of possible combinations is very large 
and there is a risk of producing an overwhelming amount of results or engendering selective 
reporting. The need for stability analysis will be reduced by detailed and unambiguous pre
specification of research methods in the review protocol (informed by substantive an 
methodological considerations), the reporting and justification of any unanticipated analyses, and 
the complete presentation of all results 

Some stability analyses are more easily interpretable than others: Stability analyses 
comparing different methodological choices but keeping the target of inference and statistical 
model the same are fairly straightforward to interpret, while analyses relying on different models 
or estimating different parameters can be more challenging. The results of leave-one-out 
analyses or comparisons of different estimators for the same parameter can be interpreted in view 
of substantive knowledge and statistical theory. Yet, discrepancies between Bayesian vs. non-
Bayesian analyses or comparisons of fixed vs. random effects models are more challenging 
because they entail very different modeling assumptions. In a sense, examining the stability of 
results across different targets of inference or models and is harder because different targets of 
inference often represent a fundamental change in the research question and different models can 
have a large influence on the research questions that can be examined. In contrast, stability 
analyses holding the model and target of inference constant pertain to the choice of data and the 
relationship of the data with the statistical model (e.g., the adequacy of the data to estimate the 
model parameters), but not about the model itself. 

Sensitivity analysis is done in view of a particular class of models: Sensitivity analysis 
examines the impact of different assumptions about unidentifiable parameters of (classes of) 
models on results. Because, by definition, sensitivity analysis relates to parameters for which the 
data do not provide adequate information, the approach to sensitivity analysis is to a large extent 
a matter of style and statistical philosophy. For example, some experts prefer to use sensitivity 
analysis to obtain bounds for the target of inference under different assumptions about 
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unidentified parameters without quantifying (eliciting) the relative probability of different values 
for the unidentified quantities. Others prefer the specification of a distribution for the possible 
values of the unidentified parameters followed by a propagation of the uncertainty implied by 
that distribution to the estimation of the target of inference. We see value in both approaches and 
in letting systematic reviewers make the choice they find most appropriate on a case-by-case 
basis. 

Table 6.1. Opportunities for stability and sensitivity analysis in the systematic review process 

Stability analyses 
Data collection and 
pre-processing, 
including exploratory 
data analysis 

Perform analysis after excluding studies not published in full 

Methods to detect sensitivity to influential studies or subsets of studies 
(leave out one, exclusion sensitivity plot) 

Exclusion of edge cases with respect to inclusion/exclusion criteria 

Alternative methods for approximating summary statistics (e.g., 
approximating the mean using the medial  in analyses of mean 
differences) 

Specification of the 
probability model for 
evidence synthesis 

Choice of likelihood function: for example, decide whether to assume 
asymptotic normality of log odds ratio vs. using a discrete (binomial) 
within-study likelihood. 
Comparison of alternative effect size indices (odds-ratio, risk 
difference) 

Estimation and testing Compare alternative variance estimators (DerSimonian-Laird vs. 
hierarchical Bayes) 
Estimation approach (maximum likelihood estimated, restricted 
maximum likelihood estimation, MCMC simulation 

Sensitivity analyses 
Impact of assumptions 
about unidentifiable 
model parameters on 
results 

In meta-analyses of net change the correlation between the baseline and 
post treatment mean in 

In meta-analysis of cluster randomized trials the correlation 

When publication bias is 
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Future Research Suggestions 
The following are suggestions for directions in future research generated from each 

chapter of the manuscript: 

Chapter I: Decision to Combine Trials of Treatment Efficacy or Harm 

•	 Key need on the decision to pool: more clear guidance about the minimum number of 
trials it is likely valid to pool at given levels of statistical heterogeneity 

Chapter II: Optimizing Use of Effect Size Data 

•	 Better reporting from RCTs (e.g. reporting of SDs, correlations from crossover trials, 
ICCs from cluster randomized trials, raw numbers for binary outcomes) would result in 
higher quality meta-analyses. 

•	 More research needed on ratio of means—both clinical interpretability and mathematical 
consistency across studies compared to standardized mean difference. 

•	 More research and transparency on ANCOVA models in adjusting for baseline
 
imbalance.
 

•	 Software packages that more easily enable use of different information. 
•	 More research on methods to handle zeros in the computation of binary outcomes 
•	 Need for empirical vs. anecdotal evidence on which metrics are most helpful in
 

conveying meta-analysis results to multiple stakeholders.
 

Chapter III: Choice of Statistical Model for Combining Studies 

•	 Evaluation of the newly developed statistical models for combining the typical effect 
measures (e.g., mean difference, OR, RR, RD for common binary data) and the relative 
performance of the new and currently used methods, which may lead to improved 
estimates for meta-analysis. 

•	 Evaluation of the relative performance of the recently developed statistical models for 
combining binary outcome to generate more evidence for model choice. 

Chapter IV: Quantifying, Testing and Exploring Statistical Heterogeneity 

•	 Future insights into heterogeneity statistics for meta-analyses involving a limited number 
of studies. 

•	 Greater emphasis placed on specified and scientifically defensible hypotheses in meta-
regression. 

•	 Better reporting of relationships among study outcomes to facilitate multivariate meta-
regression. 

Chapter V: Network Meta-Analysis (Mixed treatment comparisons/indirect comparisons) 

78
 



 
  

   
  
  
  

 
  

 
 

  
 

  
   

 
 

 

  

 
 

There are multiple challenges in conducting network meta-analysis, including: 
•	 Need for methods for combining individual patient data with aggregated data; 
•	 Integrating evidence from RCTs and observational studies; 
•	 Modeling time-to-event data 
•	 Development of user friendly software similar to that available for traditional pairwise 

meta-analysis 
•	 Empirical or theoretical evidence to support model choice. 

Chapter VI: Stability and Sensitivity Analyses in Evidence Synthesis 

•	 Educational materials and case studies to demonstrate the conduct, interpretation and 
reporting of stability and sensitivity analyses. 

•	 Simulation studies to determine the potential impact of various stability and sensitivity 
analysis choices 
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